Ukr.Biochem.J. 2015; Том 87, № 6, листопад-грудень, c. 36-51

doi: http://dx.doi.org/10.15407/ubj87.06.036

Інгібування IRE1 модифікує ефект дефіциту глюкози на експресію генів, що мають відношення до TNFα, у клітинах гліоми лінії U87

I. В. Кривдюк1, Д. O. Мінченко1,2, Н. А. Глущак1, O. О. Ратушна1, Л. Л. Карбовський1, O. Г. Мінченко1

1Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
e-mail: ominchenko@yahoo.com;
2Національний медичний університет ім. О. О. Богомольця, Київ, Україна

Пригнічення IRE1 (залежного від інозитолу ензиму-1), основного сигнального шляху стресу ендоплазматичного ретикулума, істотно знижує рівень проліферації клітин та ріст гліоми. Ми вивчали експресію генів, що мають відношення до TNFα, і ефект дефіциту глюкози на експресію цих генів у клітинах гліоми лінії U87, що експресують домінант-негативну IRE1, дефективну як за активністю кінази, так і ендорибонуклеази (dn-IRE1) з надією прояснити їх внесок у опосередкований IRE1 ріст гліоми. Встановлено, що за умов дефіциту глюкози спостерігається зниження експресії генів TNFRSF11B, TNFRSF1A, TNFRSF10D/TRAILR4 та LITAF і посилення гена – TNFRSF10B/TRAILR2/DR5 на рівні мРНК у контрольних клітинах гліоми. Водночас, експресія генів TNFRSF21/DR6, TNFAIP1, TNFAIP3, TRADD та CD70/TNFSF7 у контрольних клітинах гліоми виявилася резистентною до умов дефіциту глюкози, але пригнічення IRE1 модифікувало ефект дефіциту глюкози на експресію генів LITAF, TNFRSF21, TNFRSF11B і TRADD та індукувало чутливість експресії генів TNFRSF10B, TNFRSF1A та CD70 до умов дефіциту глюкози. Ми також показали, що експресія всіх досліджених генів у клітинах гліоми змінювалась за пригнічення IRE1, за виключенням гена TNFRSF1A (за порівняння з контрольними клітинами гліоми). Більше того, зміни в експресії генів TNFRSF1A, TNFRSF10D/TRAILR4 та LITAF, що індукуються за умов дефіциту глюкози, мали протилежну спрямованість до тих, що спостерігаються за пригнічення IRE1. Результати цієї роботи продемонстрували, що рівень експресії генів протеїнів, що індукуються TNFα, та суперродини рецепторів TNF, які мають відношення до смерті клітин і їх проліферації, регулюються IRE1, ефектором стресу ендоплазматичного ретикулума, а також геноспецифічно залежать від дефіциту глюкози. Таким чином, пригнічення активності кінази та ендорибонуклеази IRE1 корелює зі зниженням росту пухлини і дерегуляцією експресії генів протеїнів, що індукуються TNFα та суперродиною рецепторів TNF специфічно до кожного із генів.

Ключові слова: , , , , , , , , , , , , ,


Посилання:

 

  1. Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology. 2006 Jan 24;66(2 Suppl 1):S102-9. Review. PubMed, CrossRef
  2. Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 2007 Nov 15;67(22):10631-4. Review. PubMed, CrossRef
  3. Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012 Jun 25;197(7):857-67. Review. PubMed, PubMedCentral, CrossRef
  4. Pluquet O, Dejeans N, Chevet E. Watching the clock: endoplasmic reticulum-mediated control of circadian rhythms in cancer. Ann Med. 2014 Jun;46(4):233-43.  Review. PubMed, CrossRef
  5. Chesney J, Clark J, Klarer AC, Imbert-Fernandez Y, Lane AN, Telang S. Fructose-2,6-bisphosphate synthesis by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is required for the glycolytic response to hypoxia and tumor growth. Oncotarget. 2014 Aug 30;5(16):6670-86. PubMed, PubMedCentral, CrossRef
  6. Manié SN, Lebeau J, Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am J Physiol Cell Physiol. 2014 Nov 15;307(10):C901-7. Review. PubMed, CrossRef
  7. Malhotra JD, Kaufman RJ. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol. 2011 Sep 1;3(9):a004424. PubMed, PubMedCentral, CrossRef
  8. Lenihan CR, Taylor CT. The impact of hypoxia on cell death pathways. Biochem Soc Trans. 2013 Apr;41(2):657-63. Review. PubMed, CrossRef
  9. Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov. 2013 Sep;12(9):703-19. Review. PubMed, CrossRef
  10. Auf G, Jabouille A, Delugin M, Guérit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O, Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor. BMC Cancer. 2013 Dec 13;13:597. PubMed, PubMedCentral, CrossRef
  11. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol. 2009 Aug 10;186(3):323-31. PubMed, PubMedCentral, CrossRef
  12. Pluquet O, Dejeans N, Bouchecareilh M, Lhomond S, Pineau R, Higa A, Delugin M, Combe C, Loriot S, Cubel G, Dugot-Senant N, Vital A, Loiseau H, Gosline SJ, Taouji S, Hallett M, Sarkaria JN, Anderson K, Wu W, Rodriguez FJ, Rosenbaum J, Saltel F, Fernandez-Zapico ME, Chevet E. Posttranscriptional regulation of PER1 underlies the oncogenic function of IREα. Cancer Res. 2013 Aug 1;73(15):4732-43.  PubMed, PubMedCentral, CrossRef
  13. Dejeans N, Pluquet O, Lhomond S, Grise F, Bouchecareilh M, Juin A, Meynard-Cadars M, Bidaud-Meynard A, Gentil C, Moreau V, Saltel F, Chevet E. Autocrine control of glioma cells adhesion and migration through IRE1α-mediated cleavage of SPARC mRNA. J Cell Sci. 2012 Sep 15;125(Pt 18):4278-87.  PubMed, CrossRef
  14. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell. 2007 Jul 6;27(1):53-66. PubMed, CrossRef
  15. Aragón T, van Anken E, Pincus D, Serafimova IM, Korennykh AV, Rubio CA, Walter P. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature. 2009 Feb 5;457(7230):736-40. PubMed, PubMedCentral, CrossRef
  16. Minchenko OH, Kubaichuk KI, Minchenko DO, Kovalevska OV, Kulinich AO, Lypova NM. Molecular mechanisms of ERN1-mediated angiogenesis. Int J Physiol Pathophysiol. 2014; 5(1): 1-22.  CrossRef
  17. Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J, Kaufman RJ, Chevet E, Bikfalvi A, Moenner M. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res. 2007 Jul 15;67(14):6700-7. PubMed, CrossRef
  18. Auf G, Jabouille A, Guérit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA. 2010 Aug 31;107(35):15553-8. PubMed, PubMedCentral, CrossRef
  19. Zeng L, Li T, Xu DC, Liu J, Mao G, Cui MZ, Fu X, Xu X. Death receptor 6 induces apoptosis not through type I or type II pathways, but via a unique mitochondria-dependent pathway by interacting with Bax protein. J Biol Chem. 2012 Aug 17;287(34):29125-33. PubMed, PubMedCentral, CrossRef
  20. Li T, Su L, Lei Y, Liu X, Zhang Y, Liu X. DDIT3 and KAT2A Proteins Regulate TNFRSF10A and TNFRSF10B Expression in Endoplasmic Reticulum Stress-mediated Apoptosis in Human Lung Cancer Cells. J Biol Chem. 2015 Apr 24;290(17):11108-18.  PubMed, PubMedCentral, CrossRef
  21. Erkul E, Kucukodaci Z, Pinar D, Gungor A, Alparslan Babayigit M, Kurt O, Cincik H. TRAIL and TRAIL receptors in patients with laryngeal cancer. Head Neck. 2015 Mar 21. [Epub ahead of print] PubMed, CrossRef
  22. Haselmann V, Kurz A, Bertsch U, Hübner S, Olempska-Müller M, Fritsch J, Häsler R, Pickl A, Fritsche H, Annewanter F, Engler C, Fleig B, Bernt A, Röder C, Schmidt H, Gelhaus C, Hauser C, Egberts JH, Heneweer C, Rohde AM, Böger C, Knippschild U, Röcken C, Adam D, Walczak H, Schütze S, Janssen O, Wulczyn FG, Wajant H, Kalthoff H, Trauzold A. Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology. 2014 Jan;146(1):278-90. PubMed, CrossRef
  23. Cullen SP, Martin SJ. Fas and TRAIL ‘death receptors’ as initiators of inflammation: Implications for cancer. Semin Cell Dev Biol. 2015 Mar;39:26-34. Review.  PubMed, CrossRef
  24. Sarhan D, D’Arcy P, Lundqvist A. Regulation of TRAIL-receptor expression by the ubiquitin-proteasome system. Int J Mol Sci. 2014 Oct 14;15(10):18557-73. Review. PubMed, PubMedCentral, CrossRef
  25. Benschop R, Wei T, Na S. Tumor necrosis factor receptor superfamily member 21: TNFR-related death receptor-6, DR6. Adv Exp Med Biol. 2009;647:186-94. PubMed, CrossRef
  26. Yang K, Mooney C, Spahlinger G, Schuetze S, Arias-Pulido H, Verschraegen C, Gimotty P, Buckanovich RJ. DR6 as a diagnostic and predictive biomarker in adult sarcoma. PLoS One. 2012;7(5):e36525.  PubMed, PubMedCentral, CrossRef
  27. Fares F, Azzam N, Fares B, Larsen S, Lindkaer-Jensen S. Benzene-poly-carboxylic acid complex, a novel anti-cancer agent induces apoptosis in human breast cancer cells. PLoS One. 2014 Feb 11;9(2):e85156. eCollection 2014. PubMed, PubMedCentral, CrossRef
  28. Mirzaei MR, Najafi A, Arababadi MK, Asadi MH, Mowla SJ. Altered expression of apoptotic genes in response to OCT4B1 suppression in human tumor cell lines. Tumour Biol. 2014 Oct;35(10):9999-10009. PubMed, CrossRef
  29. Hu R, Du Q, Yin X, Li J, Wang T, Zhang L. Agonist antibody activates death receptor 6 downstream signaling involving TRADD recruitment. FEBS Lett. 2014 Jan 31;588(3):401-7. PubMed, CrossRef
  30. von Karstedt S, Conti A, Nobis M, Montinaro A, Hartwig T, Lemke J, Legler K, Annewanter F, Campbell AD, Taraborrelli L, Grosse-Wilde A, Coy JF, El-Bahrawy MA, Bergmann F, Koschny R, Werner J, Ganten TM, Schweiger T, Hoetzenecker K, Kenessey I, Hegedüs B, Bergmann M, Hauser C, Egberts JH, Becker T, Röcken C, Kalthoff H, Trauzold A, Anderson KI, Sansom OJ, Walczak H. Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell. 2015 Apr 13;27(4):561-73. PubMed, CrossRef
  31. Inoue M, Kamada H, Abe Y, Higashisaka K, Nagano K, Mukai Y, Yoshioka Y, Tsutsumi Y, Tsunoda S. Aminopeptidase P3, a new member of the TNF-TNFR2 signaling complex, induces phosphorylation of JNK1 and JNK2. J Cell Sci. 2015 Feb 15;128(4):656-69. PubMed, CrossRef
  32. Witort E, Lulli M, Carloni V, Capaccioli S. Anticancer activity of an antisense oligonucleotide targeting TRADD combined with proteasome inhibitors in chemoresistant hepatocellular carcinoma cells. J Chemother. 2013 Oct;25(5):292-7. PubMed, CrossRef
  33. Shukla K, Sharma AK, Ward A, Will R, Hielscher T, Balwierz A, Breunig C, Münstermann E, König R, Keklikoglou I, Wiemann S. MicroRNA-30c-2-3p negatively regulates NF-κB signaling and cell cycle progression through downregulation of TRADD and CCNE1 in breast cancer. Mol Oncol. 2015 Jun;9(6):1106-19. PubMed, CrossRef
  34. Wang D, Liu J, Tang K, Xu Z, Xiong X, Rao Q, Wang M, Wang J. Expression of pig7 gene in acute leukemia and its potential to modulate the chemosensitivity of leukemic cells. Leuk Res. 2009 Jan;33(1):28-38. PubMed, CrossRef
  35. Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, Amar S, Natkunam Y, Briones J, Melnick A, Malumbres R, Martinez-Climent JA. LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Br J Haematol. 2013 Sep;162(5):621-30.  PubMed, PubMedCentral, CrossRef
  36. Trebing J, El-Mesery M, Schäfer V, Weisenberger D, Siegmund D, Silence K, Wajant H. CD70-restricted specific activation of TRAILR1 or TRAILR2 using scFv-targeted TRAIL mutants. Cell Death Dis. 2014 Jan 30;5:e1035. PubMed, PubMedCentral, CrossRef
  37. Yoshino K, Kishibe K, Nagato T, Ueda S, Komabayashi Y, Takahara M, Harabuchi Y. Expression of CD70 in nasal natural killer/T cell lymphoma cell lines and patients; its role for cell proliferation through binding to soluble CD27. Br J Haematol. 2013 Feb;160(3):331-42. PubMed, CrossRef
  38. Jilaveanu LB, Sznol J, Aziz SA, Duchen D, Kluger HM, Camp RL. CD70 expression patterns in renal cell carcinoma. Hum Pathol. 2012 Sep;43(9):1394-9. PubMed, PubMedCentral, CrossRef
  39. Zhang X, Li X, Tan Z, Liu X, Yang C, Ding X, Hu X, Zhou J, Xiang S, Zhou C, Zhang J. MicroRNA-373 is upregulated and targets TNFAIP1 in human gastric cancer, contributing to tumorigenesis. Oncol Lett. 2013 Nov;6(5):1427-1434. PubMed, PubMedCentral, CrossRef
  40. Kim DM, Chung KS, Choi SJ, Jung YJ, Park SK, Han GH, Ha JS, Song KB, Choi NS, Kim HM, Won M, Seo YS. RhoB induces apoptosis via direct interaction with TNFAIP1 in HeLa cells. Int J Cancer. 2009 Dec 1;125(11):2520-7. PubMed, CrossRef
  41. da Silva CG, Minussi DC, Ferran C, Bredel M. A20 expressing tumors and anticancer drug resistance. Adv Exp Med Biol. 2014;809:65-81. Review. PubMed, CrossRef
  42.  Liu J, Yang S, Wang Z, Chen X, Zhang Z. Ubiquitin ligase A20 regulates p53 protein in human colon epithelial cells. J Biomed Sci. 2013 Oct 7;20:74. PubMed, PubMedCentral, CrossRef
  43. Chin LS, Lee SM, Li L. SIMPLE: A new regulator of endosomal trafficking and signaling in health and disease. Commun Integr Biol. 2013 May 1;6(3):e24214.  PubMed, PubMedCentral, CrossRef
  44. Zou J, Guo P, Lv N, Huang D. Lipopolysaccharide-induced tumor necrosis factor-α factor enhances inflammation and is associated with cancer (Review). Mol Med Rep. 2015 Nov;12(5):6399-404.  PubMed, CrossRef
  45. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300-5. PubMed
  46. Minchenko DO, Danilovskyi SV, Kryvdiuk IV, Bakalets TV, Lypova NM, Karbovskyi LL, Minchenko OH. Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells. Endoplasm Reticul Stress Dis. 2014 Jan; 1(1): 18-26. CrossRef
  47. Bochkov VN, Philippova M, Oskolkova O, Kadl A, Furnkranz A, Karabeg E, Breuss J, Minchenko OH, Mechtcheriakova D, Hohensinner P, Rychli K, Wojta J, Resink T, Binder BR, Leitinger N. Oxidized phospholipids stimulate angiogenesis via induction of VEGF, IL-8, COX-2 and ADAMTS-1  metalloprotease, implicating a novel role for lipid oxidation in progression and destabilization of atherosclerotic lesions. Circ Res. 2006; 99(8): 900-908. CrossRef
  48. Minchenko O.H., Tsymbal D.O., Moenner M., Minchenko D.O., Kovalevska O.V., Lypova N.M. IInhibition of kinase and endoribonuclease activity of ERN1/IRE1α affects expression of proliferationrelated genes in U87 glioma cells. Endoplasm Reticul Stress Dis. 2015; 2(1): 18-29. CrossRef
  49. Jang JY, Jeon YK, Choi Y, Kim CW. Short-hairpin RNA-induced suppression of adenine nucleotide translocase-2 in breast cancer cells restores their susceptibility to TRAIL-induced apoptosis by activating JNK and modulating TRAIL receptor expression. Mol Cancer. 2010 Sep 28;9:262. PubMed, PubMedCentral, CrossRef
  50. Venza M, Visalli M, Catalano T, Fortunato C, Oteri R, Teti D, Venza I. Impact of DNA methyltransferases on the epigenetic regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in malignant melanoma. Biochem Biophys Res Commun. 2013 Nov 29;441(4):743-50. PubMed, CrossRef
  51. Ratzinger G, Mitteregger S, Wolf B, Berger R, Zelger B, Weinlich G, Fritsch P, Goebel G, Fiegl H. Association of TNFRSF10D DNA-methylation with the survival of melanoma patients. Int J Mol Sci. 2014 Jul 7;15(7):11984-95. PubMed, PubMedCentral, CrossRef
  52. Tian X, Ye J, Alonso-Basanta M, Hahn SM, Koumenis C, Dorsey JF.  Modulation of CCAAT/enhancer binding protein homologous protein (CHOP)-dependent DR5 expression by nelfinavir sensitizes glioblastoma multiforme cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Biol Chem. 2011 Aug 19;286(33):29408-16. PubMed, PubMedCentral, CrossRef
  53. Ciechomska IA, Gabrusiewicz K, Szczepankiewicz AA, Kaminska B. Endoplasmic reticulum stress triggers autophagy in malignant glioma cells undergoing cyclosporine a-induced cell death. Oncogene. 2013 Mar 21;32(12):1518-29. PubMed, CrossRef
  54. Backer MV, Backer JM, Chinnaiyan P. Targeting the unfolded protein response in cancer therapy. Methods Enzymol. 2011;491:37-56. PubMed, CrossRef
  55. Johnson GG, White MC, Grimaldi M. Stressed to death: targeting endoplasmic reticulum stress response induced apoptosis in gliomas. Curr Pharm Des. 2011;17(3):284-92. Review. PubMed, PubMedCentral, CrossRef

 


Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.