Ukr.Biochem.J. 2016; Том 88, № 1, січень-лютий, c. 109-118

doi: http://dx.doi.org/10.15407/ubj88.01.109

Вплив β-амілоїдного пептиду 42 на динаміку експресії і утворення Аβ(40), IL-1β, TNFα, IL-6, IL-10 мононуклеарами периферійної крові in vitro та його корекція куркуміном

В. В. Соколік1, О. К. Коляда2, С. М. Шульга3

1ДУ «Інститут неврології, психіатрії і наркології НАМН України», Харків;
2ДУ «Інститут геронтології ім. Д. Ф. Чеботарьова НАМН України», Київ;
3ДУ «Інститут харчової біотехнології і геноміки НАН України», Київ;
e-mail: sokolik67@rambler.ru

Токсичний ефект Аβ-олігомерів супроводжує перебіг хронічного запального процесу, основними медіаторами якого є цитокіни. Тому цитокінова ланка запального процесу постає новою мішенню на шляху приборкання амілоїдозу. Метою дослідження був ефект агрегованого Аβ42 на динаміку експресії і утворення ендогенного Аβ40 і цитокінів (IL-1β, TNFα, IL-6, IL-10) мононуклеарами периферійної крові in vitro та його корекція куркуміном. Суспензію мононуклеар­них клітин, ізольованих ex tempore за допомогою фікол-урографінового градієнта зі зразків венозної крові здорових добровольців, використовували для дослідження впливу Аβ42 (15 нМ), куркуміну (54 пМ) та їх поєднаної дії (за аналогічних концентрацій) в динаміці часу: 0, 1, 3, 6 і 24 год інкубації при температурі 37 °С. Методом полімеразної ланцюгової реакції визначали експресію генів АβРР, TNFα, IL-1β, IL-6 і IL-10 та імуноензимним аналізом встановлювали вміст Аβ40 і цитокінів у мононуклеарній суспензії в динаміці інкубації. Показали індивідуальну динаміку експресії АβРР і цитокінів за дії Аβ42, який впливав на вміст Аβ40, TNFα, IL-1β, IL-6 і IL-10 у мононуклеарній суспензії. Куркумін виявив інгібування експресії генів АβРР, TNFα і IL-6, що позначилося на зниженні рівня цих двох цитокінів і Аβ40. У роботі показано динаміку антизапального впливу куркуміну in vitro на транскрипційному і трансляційному рівнях утворення цитокінів мононуклеарами. Встановлено безпосередній пригнічувальний ефект куркуміну на концентрацію ендогенного Аβ40 протягом добової інкубації за умов токсичної дії агрегатів Аβ42.

Ключові слова: , , , ,


Посилання:

  1. Koudinova NV, Berezov TT, Koudinov AR. Beta-amyloid: Alzheimer’s disease and brain beta-amyloidoses. Biochemistry (Mosc). 1999 Jul;64(7):752-7. PubMed
  2. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002 Jul 19;297(5580):353-6. Review. PubMed, CrossRef
  3. Jarrett JT, Berger EP, Lansbury PT Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry. 1993 May 11;32(18):4693-7. PubMed, CrossRef
  4. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002 Apr 4;416(6880):535-9. PubMed, CrossRef
  5. Rasin SМ, Podkoritov VS, Rasin M. The role of chronic system inflammation and insulin resistance in the pathway of senile dementia. Psychiatry. 2011;2(50):46-54. (In Russian).
  6. Forloni G, Demicheli F, Giorgi S, Bendotti C, Angeretti N. Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Brain Res Mol Brain Res. 1992 Nov;16(1-2):128-34. PubMed, CrossRef
  7. Yang Y, Quitschke WW, Brewer GJ. Upregulation of amyloid precursor protein gene promoter in rat primary hippocampal neurons by phorbol ester, IL-1 and retinoic acid, but not by reactive oxygen species. Brain Res Mol Brain Res. 1998 Sep 18;60(1):40-9. PubMed, CrossRef
  8. Blasko I, Veerhuis R, Stampfer-Kountchev M, Saurwein-Teissl M, Eikelenboom P, Grubeck-Loebenstein B. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis. 2000 Dec;7(6 Pt B):682-9. PubMed, CrossRef
  9. Nawaz A, Khan GM, Hussain A, Ahmad A, Khan A, Safdar M. Curcumin: a natural product of biological importance. Gomal University J Research. 2011;27(1):7-14.
  10. Basnet P, Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011 Jun 3;16(6):4567-98. Review. PubMed, CrossRef
  11. Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, DE Lillo A, Laino L, Lo Muzio L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med. 2015 Nov;10(5):1615-1623.  PubMedPubMedCentralCrossRef
  12. Plummer SM, Holloway KA, Manson MM, Munks RJ, Kaptein A, Farrow S, Howells L. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene. 1999 Oct 28;18(44):6013-20. PubMed, CrossRef
  13. Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, Sartor RB. Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity. J Immunol. 1999 Sep 15;163(6):3474-83. PubMed
  14. Han SS, Keum YS, Seo HJ, Surh YJ. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol. 2002 May 31;35(3):337-42. PubMed
  15. Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol. 2013 Jul;11(4):338-78. PubMed, PubMedCentral, CrossRef
  16. Villoslada P, Moreno B, Melero I, Pablos JL, Martino G, Uccelli A, Montalban X, Avila J, Rivest S, Acarin L, Appel S, Khoury SJ, McGeer P, Ferrer I, Delgado M, Obeso J, Schwartz M. Immunotherapy for neurological diseases. Clin Immunol. 2008 Sep;128(3):294-305. Review. PubMed, CrossRef
  17. Vignini A, Morganti S, Salvolini E, Sartini D, Luzzi S, Fiorini R, Provinciali L, Di Primio R, Mazzanti L, Emanuelli M. Amyloid precursor protein expression is enhanced in human platelets from subjects with Alzheimer’s disease and frontotemporal lobar degeneration: a real-time PCR study. Exp Gerontol. 2013 Dec;48(12):1505-8. PubMed, CrossRef
  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265-75. PubMed
  19. Hashiramoto A, Yamane T, Tsumiyama K, Yoshida K, Komai K, Yamada H, Yamazaki F, Doi M, Okamura H, Shiozawa S. Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha. J Immunol. 2010 Feb 1;184(3):1560-5.  PubMedCrossRef
  20. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, Kramer A, Maier B. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci USA. 2009 Dec 15;106(50):21407-12. PubMed, PubMedCentral, CrossRef
  21. Surgery: Basic Science and Clinical Evidence. Ed. Norton J. A., Bollinger R. R., Chang A. E., Lowry S. F. New York: Springer-Verlag, 2001. 2095 p.
  22. Schwarz J, Broder C, Helmstetter A, Schmidt S, Yan I, Müller M, Schmidt-Arras D, Becker-Pauly C, Koch-Nolte F, Mittrücker HW, Rabe B, Rose-John S, Chalaris A. Short-term TNFα shedding is independent of cytoplasmic phosphorylation or furin cleavage of ADAM17. Biochim Biophys Acta. 2013 Dec;1833(12):3355-67.  PubMed, CrossRef
  23. Schönbeck U, Mach F, Libby P. Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol. 1998 Oct 1;161(7):3340-6. PubMed
  24. Shi X, Zheng Z, Li J, Xiao Z, Qi W, Zhang A, Wu Q, Fang Y. Curcumin inhibits Aβ-induced microglial inflammatory responses in vitro: Involvement of ERK1/2 and p38 signaling pathways. Neurosci Lett. 2015 May 6;594:105-10. PubMed, CrossRef
  25. Jiao J, Xue B, Zhang L, Gong Y, Li K, Wang H, Jing L, Xie J, Wang X. Triptolide inhibits amyloid-beta1-42-induced TNF-alpha and IL-1beta production in cultured rat microglia. J Neuroimmunol. 2008 Dec 15;205(1-2):32-6. PubMed, CrossRef
  26. Apelt J, Schliebs R. Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res. 2001 Mar 9;894(1):21-30. PubMed, CrossRef
  27. Asselineau D, Benlhassan K, Arosio B, Mari D, Ferri E, Casati M, Gussago C, Tedone E, Annoni G, Mazzola P, Piette F, Belmin J, Pariel S, Bornand A, Beaudeux JL, Doulazmi M, Mariani J, Bray DH. Interleukin-10 Production in Response to Amyloid-β Differs between Slow and Fast Decliners in Patients with Alzheimer’s Disease. J Alzheimers Dis. 2015;46(4):837-42.  PubMed, CrossRef
  28. Michaud JP, Rivest S. Anti-inflammatory signaling in microglia exacerbates Alzheimer’s disease-related pathology. Neuron. 2015 Feb 4;85(3):450-2. PubMed, CrossRef
  29. Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res. 2004 Mar 15;75(6):742-50. PubMed, CrossRef
  30. Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem. 2007 Aug;102(4):1095-104. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.