Ukr.Biochem.J. 2018; Том 90, № 5, вересень-жовтень, c. 50-59

doi: https://doi.org/10.15407/ubj90.05.050

Дія метилжасмонату і сольового стресу на антиоксидантну систему рослин арабідопсису, дефектних за генами жасмонатного сигналінгу

Т. О. Ястреб1, Ю. Є. Колупаєв1,2, М. В. Швиденко1, О. П. Дмитрієв3

1Харківський національний аграрний університет ім. В. В. Докучаєва, Україна;
e-mail: plant_biology@ukr.net;
2Харківський національний університет ім. В. Н. Каразіна, Україна;
3Інститут клітинної біології та генетичної інженерії НАН України, Київ;
e-mail: dmitriev.ap@gmail.com

Роль жасмонатного сигналінгу в регуляції стреспротекторних систем арабідопсису за сольового стресу залишається недостатньо вивченою. Для її з’ясування доцільні порівняльні дослідження з мутантами за різними протеїновими компонентами жасмонатного сигналінгу. У зв’язку з цим досліджували вплив метилжасмонату (МЖ, 50 мкМ) і сольового стресу (150 мМ NaCl) на функціонування антиоксидантної та осмопротекторної систем рослин арабідопсису дикого типу (Col-0) і дефектних за жасмонатним сигналінгом: coi1 (мутант за геном, що кодує протеїн COI1, який бере участь у видаленні протеїнів-репресорів транскрипційних факторів жасмонатного сигналінгу) і jin1 (мутант, дефектний за геном, що кодує транскрипційний фактор JIN1/MYC2 – один із ключових у жасмонатному сигналінгу). Сольовий стрес інгібував ріст рослин всіх трьох генотипів. Обробка МЖ перед сольовим стресом позитивно впливала тільки на ріст рослин дикого типу. Також у рослин Col-0, оброблених МЖ, на відміну від мутантів coi1 і jin1, в умовах сольового стресу зберігалися близькі до контролю величини вмісту води, сумарного вмісту хлорофілів і підвищувався вміст каротиноїдів. Рослини генотипу coi1 у звичайних умовах відрізнялися від рослин дикого типу і мутантів jin1 зниженою активністю гваяколпероксидази і каталази і підвищеним вмістом проліну. Обробка МЖ не впливала на активність антиоксидантних ензимів і вміст проліну в обох мутантів, дефект­них за жасмонатним сигналінгом. За сольового стресу показники активності супероксиддисмутази, каталази і гваяколпероксидази, а також вмісту проліну і антоціанів у рослин дикого типу, оброблених МЖ, були помітно вищими, ніж у контрольних. Обговорюється роль жасмонатзалежних протекторних систем у забезпеченні стійкості рослин арабідопсису до сольового стресу.

Ключові слова: , , , , , ,


Посилання:

  1. Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot. 2013 Jun;111(6):1021-58. PubMed, PubMedCentral, CrossRef
  2. Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 2015 Apr;20(4):219-29. PubMed, CrossRef
  3. Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell. 2004 Aug;16(8):2117-27. PubMed, PubMedCentral, CrossRef
  4. Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MC, Thevelein JM, Maaheimo H, Oksman-Caldentey KM, Rodriguez PL, Rischer H, Goossens A. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci USA. 2011 Apr 5;108(14):5891-6. PubMed, PubMedCentral, CrossRef
  5. Santino A, Taurino M, De Domenico S, Bonsegna S, Poltronieri P, Pastor V, Flors V. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep. 2013 Jul;32(7):1085-98.  PubMed, CrossRef
  6. Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell. 2007 Jul;19(7):2225-45.  PubMed, PubMedCentral, CrossRef
  7. Ismail A, Riemann M, Nick P. The jasmonate pathway mediates salt tolerance in grapevines. J Exp Bot. 2012 Mar;63(5):2127-39.  PubMed, PubMedCentral, CrossRef
  8. Dar TA, Uddin M, Khan MMA, Hakeem KR, Jaleel H. Jasmonates counter plant stress: A Review. Environ Exp Bot. 2015; 115: 49-57.  CrossRef
  9. Yastreb TO, Kolupaev YuE, Lugovaya AA, Dmitriev AP. Content of osmolytes and flavonoids under salt stress in Arabidopsis thaliana plants defective in jasmonate signaling. Appl Biochem Microbiol. 2016; 52(2): 210-215. CrossRef
  10. Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solan R. Jasmonate-insensitive1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defence responses in Arabidopsis. Plant Cell. 2004; 16(7): 1938-1950. CrossRef
  11. Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S. A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell. 2005 Jul;17(7):1953-66. PubMed, PubMed, CrossRef
  12. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res. 2011 Jul;124(4):509-25.  PubMed, CrossRef
  13. Yastreb TO, Kolupaev YuE, Lugovaya AA, Dmitriev AP. Formation of adaptive reactions in Arabidopsis thaliana wild-type and mutant jin1 plants under action of abscisic acid and salt stress. Cytol Genet. 2017; 51(5): 325-330.  CrossRef
  14. Palmieri MC, Sell S, Huang X, Scherf M, Werner T, Durner J, Lindermayr C. Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot. 2008;59(2):177-86. PubMed, CrossRef
  15. Yastreb TO, Kolupaev YuE, Karpets YuV, Dmitriev AP. Effect of nitric oxide donor on salt resistance of Arabidopsis jin1 mutants and wild-type plants. Russ J Plant Physiol. 2017; 64(2): 207-214.  CrossRef
  16. Ryu H, Cho YG. Plant hormones in salt stress tolerance. J Plant Biol. 2015; 58(3): 147-155.  CrossRef
  17. Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R. Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell. 2003 Jan;15(1):165-78. PubMed, PubMedCentral, CrossRef
  18. Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG. Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol. 2005 Jul;58(4):497-513.
    PubMed, CrossRef
  19. Chen Y, Pang Q, Dai S, Wang Y, Chen S, Yan X. Proteomic identification of differentially expressed proteins in Arabidopsis in response to methyl jasmonate. J Plant Physiol. 2011 Jul 1;168(10):995-1008.  PubMed, CrossRef
  20. Semchuk NM, Vasylyk YuV, Lushchak OV, Lushchak VI.Effect of short-term salt stress on oxidative stress markers and antioxidant enzymes activity in tocopherol-deficient Arabidopsis thaliana plants. Ukr Biokhim Zhurn. 2012 Jul-Aug;84(4):41-8. PubMed
  21. Shlyk AA. Determination of chlorophylls and carotenoids in extracts of green leaves. Biochemical Methods in Plant Physiology. Ed. Pavlinova OA. M.: Nauka, 1971: 154-170. (In Russian).
  22. Kolupaev YuE, Ryabchun NI, Vayner AA, Yastreb TO, Oboznyi AI. Antioxidant enzyme activity and osmolyte content in winter cereal seedlings under hardening and cryostress. Russ J Plant Physiol. 2015; 62(4): 499-506.  CrossRef
  23. Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002 May;53(372):1331-41. PubMed, CrossRef
  24. Bates LS, Walden RP, Tear GD. Rapid determination of free proline for water stress studies. Plant Soil. 1973; 39(1): 205-207.  CrossRef
  25. Nogués S, Baker NR. Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot. 2000 Jul;51(348):1309-17. PubMed, CrossRef
  26. Pietrini F, Massacci A. Leaf anthocyanin content changes in Zea mays L. grown at low temperature: Significance for the relationship between the quantum yield of PS II and the apparent quantum yield of CO2 assimilation. Photosynthesis Res. 1998; 58(3): 213-219.  CrossRef
  27. Santos CV. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Horticult. 2004; 103(1): 93-99. CrossRef
  28. Liang X, Zhang L, Natarajan SK, Becker DF. Proline mechanisms of stress survival. Antioxid Redox Signal. 2013 Sep 20;19(9):998-1011.  PubMed, PubMedCentral, CrossRef
  29. Radyukina NL, Ivanov YuV, Kartashov AV, Shevyakova NI, Rakitin VYu., Khryanin VN, Kuznetsov VlV. Inducible and constitutive mechanisms of salt stress resistance in Geum urbanum L. Russ J Plant Physiol. 2007; 54(5): 612-618. CrossRef
  30. Sheteawi SA. Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. Int J Agri Biol. 2007; 9(3):473-478.
  31. Zhao ML, Wang JN, Shan W, Fan JG, Kuang JF, Wu KQ, Li XP, Chen WX, He FY, Chen JY, Lu WJ. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environ. 2013 Jan;36(1):30-51. PubMed, CrossRef
  32. Kumchai J, Huang JZ, Lee CY, Chen FC, Chin SW. Proline partially overcomes excess molybdenum toxicity in cabbage seedlings grown in vitro. Genet Mol Res. 2013 Nov 18;12(4):5589-601. PubMed, CrossRef
  33. Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya K, Shibata D, Ohta H. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J. 2005 Nov;44(4):653-68. PubMed, CrossRef
  34. Kalachova TA, Iakovenko OM, Kretinin SV, Kravets VS. Effects of salicylic and jasmonic acid on phospholipase d activity and the level of active oxygen species in soybean seedlings. Biochemistry (Mosc) Suppl Ser A: Membrane Cell Biol. 2012; 6(3): 243-248. CrossRef
  35. Karpets YuV, Kolupaev YuE, Yastreb TO, Oboznyi OI, Shvydenko MV, Lugova GA, Vayner AO. Reactive oxygen forms and Ca ions as possible intermediaries under the induction of heat resistance of plant cells by jasmonic acid. Ukr Biokhim Zhurn. 2013 May-Jun;85(3):62-8. (In Russian). PubMed, CrossRef
  36. Wolucka BA, Goossens A, Inzé D. Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot. 2005 Sep;56(419):2527-38. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.