Ukr.Biochem.J. 2018; Том 90, № 5, вересень-жовтень, c. 71-80

doi: https://doi.org/10.15407/ubj90.05.071

Оцінка вмісту металотіонеїнів, показників окисного стресу та цитотоксичності в молодих жінок з ожирінням

Г. І. Фальфушинська, О. І. Горин, В. В. Хома, Г. В. Терещук,
Д. В. Осадчук, Н. І. Руснак, О. Б. Столяр

Тернопільський національний педагогічний університет імені В. Гнатюка, Україна;
e-mail: falfushynska@tnpu.edu.ua

Ожиріння набуває загрозливих масштабів та являє глобальну медико-соціальну проблему. Відтак, існує необхідність вивчення причин виникнення та механізмів його прогресування для вироблення єдиної стратегії профілактики ожиріння та зменшення темпів його приросту. Досліджували показники ліпідограми та окисного стресу, вміст металотіонеїнів та ознаки цитотоксичності в крові молодих жінок, хворих на ожиріння (О-група, 32<індекс маси тіла (ІМТ) < 37). В обстежених жінок О-групи встановлено значно вищу активність каталази (на 435%), підвищені рівні активних форм оксигену (на 129%), концентрація окисленого глутатіону (на 55%), вміст ТБК-АП (на 26%) і карбонільних похідних протеїнів (на 345%) порівняно з обстеженими в контрольній групі. За ожиріння збільшувався вміст металотіонеїнів, які відіграють частково протекторну роль щодо радикальних процесів у клітинах та зменшують прояви окисного ушкодження біомолекул в жінок з ожирінням. У хворих на ожиріння проявлялися ознаки цитотоксичності зі збільшенням лактатдегідрогеназної активності (на 387%) та рівня фрагментації ДНК (на 42%). Згідно з методом головних компонентів розвиток ожиріння визначається сукупністю ознак, до яких належать металотіонеїни, показники окисного стресу, цитотоксичності, ІМТ, концентрація ліпопротеїнів низької щільності та холестеролу. ІМТ корелює з показниками ліпідного обміну, окисного ушкодження та цитотоксичності (> |0,73|, P < 0,001).

Ключові слова: , , , , ,


Посилання:

  1. Sikaris KA. The clinical biochemistry of obesity. Clin Biochem Rev. 2004 Aug;25(3):165-81. PubMed, PubMedCentral
  2. Obesity and overweight. Key facts issued by World Health Organisation. 2017. Electronic resource. Available from http:. www.who.int. en. news-room. fact-sheets. detail. obesity-and-overweight (assessed 19.06.2018).
  3. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006 Mar 10;160(1):1-40. PubMed, CrossRef
  4. Chisolm GM, Steinberg D. The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med. 2000 Jun 15;28(12):1815-26. PubMed, CrossRef
  5. Schrauwen P, Schrauwen-Hinderling V, Hoeks J, Hesselink MK. Mitochondrial dysfunction and lipotoxicity. Biochim Biophys Acta. 2010 Mar;1801(3):266-71. PubMed, CrossRef
  6. Falfushynska HI, Gnatyshyna LL, Deneha HV, Osadchuk OY, Stoliar OB. Manifestations of oxidative stress and molecular damages in ovarian cancer tissue. Ukr Biochem J. 2015 Sep-Oct;87(5):93-102. PubMed, CrossRef
  7. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 2000 May 15;28(10):1456-62. PubMed, CrossRef
  8. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G, Valadez-Vega C, Morales-González JA. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12(5):3117-32. PubMed, PubMedCentral, CrossRef
  9. Falfushynska HI, Gnatyshyna LL, Osadchuk OY, Shidlovski VO, Stoliar OB. Metal-binding functions and antioxidant properties in human thyroid gland under iodine deficient nodular colloidal goiter. Ukr Biokhim Zhurn. 2011 Nov-Dec;83(6):92-7.(In Ukrainian). PubMed
  10. Maret W. Redox biochemistry of mammalian metallothioneins. J Biol Inorg Chem. 2011 Oct;16(7):1079-86. PubMed, CrossRef
  11. Falfushynska HI, Gnatyshyna LL, Osadchuk OY, Shidlovski VO, Stoliar OB. Trace elements storage peculiarities and metallothionein content in human thyroid gland under iodine deficiency euthyroid nodular goiter. Ukr Biochem J. 2014 May-Jun;86(3):107-13. (In Ukrainian). PubMed, CrossRef
  12. Aebi H. Catalase. Methods Enzym Anal. 1974;2:673-684.CrossRef
  13. Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548-55. PubMed, CrossRef
  14. Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207-12. PubMed, CrossRef
  15. Viarengo A, Burlando B, Cavaletto M, Marchi B, Ponzano E, Blasco J. Role of metallothionein against oxidative stress in the mussel Mytilus galloprovincialis. Am J Physiol. 1999 Dec;277(6 Pt 2):R1612-9. PubMed, CrossRef
  16. Lushchak VI, Bahniukova TV, Lushchak OV. Indices of oxidative stress. 1. TBA-reactive substances and carbonylproteins. Ukr Biokhim Zhurn. 2004 May-Jun;76(3):136-41. (In Ukrainian). PubMed
  17. Bergmeyer HU, Bernt E. UV-Assay with Pyruvate and NADH.  Methods Enzym Anal. 1974;2:574–579. CrossRef
  18. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130-9. PubMed
  19. Viarengo A, Ponzano E, Dondero F, Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Environ Res. 1997;44(1):69-84. CrossRef
  20. Olive PL. DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells. Environ Mol Mutagen. 1988;11(4):487-95. PubMed, CrossRef
  21. Miles AT, Hawksworth GM, Beattie JH, Rodilla V. Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol. 2000;35(1):35-70. PubMed, CrossRef
  22. Sato M, Kawakami T, Kondoh M, Takiguchi M, Kadota Y, Himeno S, Suzuki S. Development of high-fat-diet-induced obesity in female metallothionein-null mice. FASEB J. 2010 Jul;24(7):2375-84. PubMed, CrossRef
  23. Do MS, Nam SY, Hong SE, Kim KW, Duncan JS, Beattie JH, Trayhurn P. Metallothionein gene expression in human adipose tissue from lean and obese subjects. Horm Metab Res. 2002 Jun;34(6):348-51. PubMedCrossRef
  24. Cancello R, Zulian A, Gentilini D, Mencarelli M, Della Barba A, Maffei M, Vitti P, Invitti C, Liuzzi A, Di Blasio AM. Permanence of molecular features of obesity in subcutaneous adipose tissue of ex-obese subjects. Int J Obes (Lond). 2013 Jun;37(6):867-73. PubMed, CrossRef
  25. dos Santos Rocha PB, de Castro Amorim A, de Sousa AF, do Monte SJ, da Mata Sousa LC, do Nascimento Nogueira N, Neto JM, do Nascimento Marreiro D. Expression of the zinc transporters genes and metallothionein in obese women. Biol Trace Elem Res. 2011 Nov;143(2):603-11. PubMed, CrossRef
  26. Kim JR, Ryu HH, Chung HJ, Lee JH, Kim SW, Kwun WH, Baek SH, Kim JH. Association of anti-obesity activity of N-acetylcysteine with metallothionein-II down-regulation. Exp Mol Med. 2006 Apr 30;38(2):162-72. PubMed, CrossRef
  27. Wang S, Gu J, Xu Z, Zhang Z, Bai T, Xu J, Cai J, Barnes G, Liu QJ, Freedman JH, Wang Y, Liu Q, Zheng Y, Cai L. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway. J Cell Mol Med. 2017 Jun;21(6):1182-1192. PubMed, PubMedCentral, CrossRef
  28. Sanguinetti SM, Brites FD, Fasulo V, Verona J, Elbert A, Wikinski RL, Schreier LE. HDL oxidability and its protective effect against LDL oxidation in Type 2 diabetic patients. Diabetes Nutr Metab. 2001 Feb;14(1):27-36. PubMed
  29. Brites F, Zago V, Verona J, Muzzio ML, Wikinski R, Schreier L. HDL capacity to inhibit LDL oxidation in well-trained triathletes. Life Sci. 2006 May 22;78(26):3074-81. PubMed, CrossRef
  30. Brennan ML, Hazen SL. Amino acid and protein oxidation in cardiovascular disease. Amino Acids. 2003 Dec;25(3-4):365-74. PubMed, CrossRef
  31. Gaetani GF, Ferraris AM, Rolfo M, Mangerini R, Arena S, Kirkman HN. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood. 1996 Feb 15;87(4):1595-9. PubMed
  32. Rindler PM, Plafker SM, Szweda LI, Kinter M. High dietary fat selectively increases catalase expression within cardiac mitochondria. J Biol Chem. 2013 Jan 18;288(3):1979-90. PubMed, PubMedCentral, CrossRef
  33. Manta B, Hugo M, Ortiz C, Ferrer-Sueta G, Trujillo M, Denicola A. The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch Biochem Biophys. 2009 Apr 15;484(2):146-54. PubMed, CrossRef
  34. Craig PM, Wood CM, McClelland GB. Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol. 2007 Nov;293(5):R1882-92. PubMed, CrossRef
  35. Koide CL, Collier AC, Berry MJ, Panee J. The effect of bamboo extract on hepatic biotransforming enzymes–findings from an obese-diabetic mouse model. J Ethnopharmacol. 2011 Jan 7;133(1):37-45. PubMed, PubMedCentral, CrossRef
  36. Roe AL, Howard G, Blouin R, Snawder JE. Characterization of cytochrome P450 and glutathione S-transferase activity and expression in male and female ob/ob mice. Int J Obes Relat Metab Disord. 1999 Jan;23(1):48-53. PubMed, CrossRef
  37. Amer MA, Ghattas MH, Abo-Elmatty DM, Abou-El-Ela SH. Evaluation of glutathione S-transferase P1 genetic variants affecting type-2 diabetes susceptibility and glycemic control. Arch Med Sci. 2012 Sep 8;8(4):631-6. PubMed, PubMedCentral, CrossRef
  38. Azuma M, Shi M, Danenberg KD, Gardner H, Barrett C, Jacques CJ, Sherod A, Iqbal S, El-Khoueiry A, Yang D, Zhang W, Danenberg PV, Lenz HJ. Serum lactate dehydrogenase levels and glycolysis significantly correlate with tumor VEGFA and VEGFR expression in metastatic CRC patients. Pharmacogenomics. 2007 Dec;8(12):1705-13. PubMed, CrossRef
  39. Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014 Jul;17:76-100. PubMed, CrossRef
  40. Shah MS, Fogelman DR, Raghav KP, Heymach JV, Tran HT, Jiang ZQ, Kopetz S, Daniel CR. Joint prognostic effect of obesity and chronic systemic inflammation in patients with metastatic colorectal cancer. Cancer. 2015 Sep 1;121(17):2968-75. PubMed, PubMedCentral, CrossRef
  41. Brisbois TD, Farmer AP, McCargar LJ. Early markers of adult obesity: a review. Obes Rev. 2012 Apr;13(4):347-67. PubMed, PubMedCentral, CrossRef
  42. Romero A, Rezende L, Romero S, Villar B. Relationship between obesity and biochemical markers in Brazilian adolescents. Rev Bras Cineantropom Desempenho Hum. 2014;16(3):268-276. CrossRef
  43. Laimer M, Ebenbichler CF, Kaser S, Sandhofer A, Weiss H, Nehoda H, Aigner F, Patsch JR. Markers of chronic inflammation and obesity: a prospective study on the reversibility of this association in middle-aged women undergoing weight loss by surgical intervention. Int J Obes Relat Metab Disord. 2002 May;26(5):659-62. PubMed, CrossRef
  44. de Albuquerque A, Kaul S, Breier G, Krabisch P, Fersis N. Multimarker Analysis of Circulating Tumor Cells in Peripheral Blood of Metastatic Breast Cancer Patients: A Step Forward in Personalized Medicine. Breast Care (Basel). 2012 Feb;7(1):7-12.  PubMed, PubMedCentral, CrossRef
  45. O’Donoghue ML, Morrow DA, Cannon CP, Jarolim P, Desai NR, Sherwood MW, Murphy SA, Gerszten RE, Sabatine MS. Multimarker Risk Stratification in Patients With Acute Myocardial Infarction. J Am Heart Assoc. 2016 May 20;5(5). pii: e002586. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.