Ukr.Biochem.J. 2019; Том 91, № 1, січень-лютий, c. 53-64

doi: https://doi.org/10.15407/ubj91.01.053

Періодичне голодування спричиняє метаболічний стрес і лейкопенію в молодих мишей

О. М. Сорочинська1, М. М. Байляк1, Ю. В. Василик1,
О. В. Кузняк1, І. З. Дрогомирецька1, А. Я. Клоновський1,
Дж. М. Сторі2, К. Б. Сторі2, В. І. Лущак1

1Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна;
2Інститут біохімії, Карлетонський університет, Оттава, Канада;
e-mail: lushchak@pu.if.ua

Надмірна вага і ожиріння стали епідемією світового масштабу, що є наслідком переїдання, особливо у разі дотримання так званої західної дієти, збагаченої на вуглеводи та жири. Відомо, що за таких умов обмеження споживання їжі та зміна її складу можуть бути дієвими для дорослих організмів. Водночас, інформація щодо дієвості обмеженого харчування для молодих особин суперечлива. Метою нашого досліджен­ня було охарактеризувати вплив періодичного голодування з використанням протоколу голодування/годівлі через день на біохімічні та гематологічні показники в молодих мишей віком від одного до двох місяців. Показано, що миші, які періодично голодували, мали меншу вагу, нижчий вміст глюкози та лактату, нижчу загальну кількість лейкоцитів, а також вищу активність аланінамінотрансферази та аспартатамінотрансферази в крові, ніж контрольні особини відповідної вікової групи. Тварини, що голодували, були змушені спожити більше їжі, щоб досягти тієї ж маси тіла, що і в тварин, які мали необмежений доступ до їжі. Можливо, ці відмінності пояснюються необхідністю затратити певні ресурси для боротьби зі стресом, спричиненим періодичним голодуванням. Загалом, наші результати свідчать про те, що періодичне голодування в молодому віці може негативно вплинути на організм молодих ссавців.

Ключові слова: , , , ,


Посилання:

  1. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017 Oct;39:46-58. PubMed, PubMedCentral, CrossRef
  2. Xie K, Neff F, Markert A, Rozman J, Aguilar-Pimentel JA, Amarie OV, Becker L, Brommage R, Garrett L, Henzel KS, Hölter SM, Janik D, Lehmann I, Moreth K, Pearson BL, Racz I, Rathkolb B, Ryan DP, Schröder S, Treise I, Bekeredjian R, Busch DH, Graw J, Ehninger G, Klingenspor M, Klopstock T, Ollert M, Sandholzer M, Schmidt-Weber C, Weiergräber M, Wolf E, Wurst W, Zimmer A, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Ehninger D. Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice. Nat Commun. 2017 Jul 24;8(1):155. PubMed, PubMedCentral, CrossRef
  3. Ma L, Wang R, Dong W, Li Y, Xu B, Zhang J, Zhao Z. Long-term caloric restriction in mice may prevent age-related learning impairment via suppression of apoptosis. Behav Brain Res. 2016 Dec 15;315:45-50. PubMed, CrossRef
  4. Ntsapi C, Loos B. Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression. Exp Gerontol. 2016 Oct;83:97-111. PubMed, CrossRef
  5. Parikh I, Guo J, Chuang KH, Zhong Y, Rempe RG, Hoffman JD, Armstrong R, Bauer B, Hartz AM, Lin AL. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging (Albany NY). 2016 Nov 8;8(11):2814-2826. PubMed, PubMedCentral, CrossRef
  6. Gratuze M, Julien J, Morin F, Marette A, Planel E. Differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in a mouse model of Alzheimer’s disease-like tau pathology fed with Western diet. Prog Neuropsychopharmacol Biol Psychiatry. 2017 Oct 3;79(Pt B):452-461.
    PubMed, CrossRef
  7. Salvatore MF, Terrebonne J, Cantu MA, McInnis TR, Venable K, Kelley P, Kasanga EA, Latimer B, Owens CL, Pruett BS, Yu Y, Luedtke R, Forster MJ, Sumien N, Ingram DK. Dissociation of Striatal Dopamine and Tyrosine Hydroxylase Expression from Aging-Related Motor Decline: Evidence from Calorie Restriction Intervention. J Gerontol A Biol Sci Med Sci. 2017 Dec 12;73(1):11-20. PubMed, PubMedCentral, CrossRef
  8. Wahl D, Cogger VC, Solon-Biet SM, Waern RV, Gokarn R, Pulpitel T, Cabo Rd, Mattson MP, Raubenheimer D, Simpson SJ, Le Couteur DG. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev. 2016 Nov;31:80-92. PubMed, PubMedCentral, CrossRef
  9.  Antoni R, Johnston KL, Collins AL, Robertson MD. Effects of intermittent fasting on glucose and lipid metabolism. Proc Nutr Soc. 2017 Aug;76(3):361-368. PubMed, CrossRef
  10. Speakman JR, Mitchell SE. Caloric restriction. Mol Aspects Med. 2011 Jun;32(3):159-221. PubMed, CrossRef
  11. Weindruch R, Walford RL. Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science. 1982 Mar 12;215(4538):1415-8. PubMed, CrossRef
  12. Jensen TL, Kiersgaard MK, Sørensen DB, Mikkelsen LF. Fasting of mice: a review. Lab Anim. 2013 Oct;47(4):225-40. PubMed, CrossRef
  13. Rathkolb B, Fuchs H, Gailus-Durner V, Aigner B, Wolf E, Hrabě de Angelis M. Blood collection from mice and hematological analyses on mouse blood. Curr Protoc Mouse Biol. 2013 Jun 1;3(2):101-19.  PubMed, CrossRef
  14. Houwen B. Blood film preparation and staining procedures. Clin Lab Med. 2002 Mar;22(1):1-14. PubMed, CrossRef
  15. Löffler H, Rastetter J, Haferlach T. Atlas of clinical hematology. 6th revised ed.  Springer, 2005. 429 p.
  16. Lushchak VI. Influence of polyethylene glycol on lactate dehydrogenase. Biochem Mol Biol Int. 1998 Feb;44(2):425-31. PubMed
  17. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. PubMed, CrossRef
  18. Cuddihee RW, Fonda ML. Concentrations of lactate and pyruvate and temperature effects on lactate dehydrogenase activity in the tissues of the big brown bat (Eptesicus fuscus) during arousal from hibernation. Comp Biochem Physiol B. 1982;73(4):1001-9. PubMed, CrossRef
  19. Varady KA. Impact of intermittent fasting on glucose homeostasis. Curr Opin Clin Nutr Metab Care. 2016 Jul;19(4):300-2. PubMed, CrossRef
  20. Hall KD, Chung ST. Low-carbohydrate diets for the treatment of obesity and type 2 diabetes. Curr Opin Clin Nutr Metab Care. 2018 Jul;21(4):308-312. PubMed, CrossRef
  21. Harris L, Hamilton S, Azevedo LB, Olajide J, De Brún C, Waller G, Whittaker V, Sharp T, Lean M, Hankey C, Ells L. Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Database System Rev Implement Rep. 2018 Feb;16(2):507-547. PubMed, CrossRef
  22. Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, Ingram DK, Lane MA, Mattson MP. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci USA. 2003 May 13;100(10):6216-20. PubMed, PubMedCentral, CrossRef
  23. Ayala JE, Bracy DP, McGuinness OP, Wasserman DH. Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes. 2006 Feb;55(2):390-7. PubMed, CrossRef
  24. Joslin PMN, Bell RK, Swoap SJ. Obese mice on a high-fat alternate-day fasting regimen lose weight and improve glucose tolerance. J Anim Physiol Anim Nutr (Berl). 2017 Oct;101(5):1036-1045. PubMed, CrossRef
  25. Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, Patel D, Ma Y, Brocker CN, Yan T, Krausz KW, Xiang R, Gavrilova O, Patterson AD, Gonzalez FJ. Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota. Cell Metab. 2017 Nov 7;26(5):801. PubMed, PubMedCentral, CrossRef
  26. Rovenko BM, Kubrak OI, Gospodaryov DV, Perkhulyn NV, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J Insect Physiol. 2015 Aug;79:42-54. PubMed, CrossRef
  27. Serfilippi LM, Pallman DR, Russell B. Serum clinical chemistry and hematology reference values in outbred stocks of albino mice from three commonly used vendors and two inbred strains of albino mice. Contemp Top Lab Anim Sci. 2003 May;42(3):46-52. PubMed
  28. Fernández I, Peña A, Del Teso N, Pérez V, Rodríguez-Cuesta J. Clinical biochemistry parameters in C57BL/6J mice after blood collection from the submandibular vein and retroorbital plexus. J Am Assoc Lab Anim Sci. 2010 Mar;49(2):202-6. PubMed, PubMedCentral
  29. Santos EW, Oliveira de DC, Hastreiter A, de Silva GB, de Beltran JSO, Tsujita M, Crisma AR, Neves SMP, Fock RA, Borelli P. Hematological and biochemical reference values for C57BL/6, Swiss Webster and BALB/c mice. Braz J Vet Res Anim Sci. 2016; 53(2):138. CrossRef
  30. Suhara T, Hishiki T, Kasahara M, Hayakawa N, Oyaizu T, Nakanishi T, Kubo A, Morisaki H, Kaelin WG Jr, Suematsu M, Minamishima YA. Inhibition of the oxygen sensor PHD2 in the liver improves survival in lactic acidosis by activating the Cori cycle. Proc Natl Acad Sci USA. 2015 Sep 15;112(37):11642-7. PubMed, PubMedCentral, CrossRef
  31. Tatulli G, Mitro N, Cannata SM, Audano M, Caruso D, D’Arcangelo G, Lettieri-Barbato D, Aquilano K. Intermittent fasting applied in combination with rotenone treatment exacerbates dopamine neurons degeneration in mice. Front Cell Neurosci. 2018 Jan 17;12:4. PubMed, PubMedCentral, CrossRef
  32. Schnell MA, Hardy C, Hawley M, Propert KJ, Wilson JM. Effect of blood collection technique in mice on clinical pathology parameters. Hum Gene Ther. 2002 Jan 1;13(1):155-61. PubMed, CrossRef
  33. Choi IY, Lee C, Longo VD. Nutrition and fasting mimicking diets in the prevention and treatment of autoimmune diseases and immunosenescence. Mol Cell Endocrinol. 2017 Nov 5;455:4-12. PubMed, PubMedCentral, CrossRef
  34. Cheng CW, Adams GB, Perin L, Wei M, Zhou X, Lam BS, Da Sacco S, Mirisola M, Quinn DI, Dorff TB, Kopchick JJ, Longo VD. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell. 2014 Jun 5;14(6):810-23. PubMed, PubMedCentral, CrossRef
  35. Hickman DL. Evaluation of the neutrophil:lymphocyte ratio as an indicator of chronic distress in the laboratory mouse. Lab Anim (NY). 2017 Jun 23;46(7):303-307. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.