Ukr.Biochem.J. 2019; Том 91, № 3, травень-червень, c. 34-45
doi: https://doi.org/10.15407/ubj91.03.034
Адаптаційна відповідь ацинарних клітин підшлункової залози щурів на деполяризацію внутрішньої мембрани мітохондрій
Б. О. Манько, О. О. Білонога, В. В. Манько
Львівський національний університет імені Івана Франка, Україна;
e-mail: bohdan.manko@lnu.edu.ua
Отримано: 06 грудня 2018; Затверджено: 14 березня 2019
Залежність роз’єднаного дихання інтактних панкреатичних ацинусів від субстратів окислення та функціонального стану клітини не досліджено. У роботі реєстрували базальну швидкість та швидкість FCCP-стимульованого дихання ізольованих панкреатичних ацинусів за допомогою електрода Кларка і оцінювали мембранний потенціал мітохондрій за інтенсивністю флуоресценції родаміну 123. Відповідь ацинусів на внесення FCCP характеризували максимальною швидкістю роз’єднаного дихання, оптимальною концентрацією FCCP, прискоренням та сповільненням дихання. Максимальна швидкість роз’єднаного дихання істотно збільшилася за окислення глюкози + глутаміну (3,03 ± 0,54 в.о.), глюкози + глутаміну + пірувату (2,82 ± 0,51 в.о.), глюкоза + ізоцитрат (2,71 ± 0,33 в.о.), глюкози + малату (2,75 ± 0,38 в.о.), глюкози + монометилсукцинату (2,64 ± 0,42 в.о.) або глюкози + диметил-α-кетоглутарату (2,36 ± 0,33 в.о.) у порівнянні з максимальною швидкістю роз’єднаного дихання за окислення лише глюкози (1,73–2,02 в.о.) або за відсутності екзогенних субстратів окислення (1,76 ± 0,33 в.о.). Оптимальна концентрація FCCP виявилася найвищою (1,75 мкМ) за окислення суміші глюкози + глутаміну + пірувату та найнижчою (0,5 мкМ) – за окислення екзогенного глутамату або суміші глюкози з такими субстратами, як ізоцитрат, малат, сукцинат або α-кетоглутарат. Прискорення дихання після додавання FCCP було найвищим за окислення диметил-α-кетоглутарату. Після досягання піка швидкості дихання ацинарними клітинами підшлункової залози у багатьох експериментах спостерігалось часозалежне сповільнення швидкості дихання. Це сповільнення дихання збільшувалося за збільшення концентрації FCCP і залежало від субстрату окислення. Найістотнішим воно було за окислення малату та ізоцитрату. Піруват сам по собі чи його комбінація з глутаміном та глюкозою значно знижували деполяризацію внутрішньої мембрани мітохондрій, спричинену дією FCCP, а також підвищували коефіцієнт еластичності залежності дихання від зміни мембранного потенціалу. Отже, суміш пірувату, глутаміну та глюкози є оптимальною для підтримання адаптивної здатності мітохондрій панкреатичних ацинусів відповідати на деполяризацію їхньої внутрішньої мембрани.
Ключові слова: деполяризація, мітохондрії, панкреатичні ацинуси, роз’єднувачі дихання, споживання кисню, субстрати окислення
Посилання:
- Kosowski H, Schild L, Kunz D, Halangk W. Energy metabolism in rat pancreatic acinar cells during anoxia and reoxygenation. Biochim Biophys Acta. 1998 Oct 5;1367(1-3):118-26. PubMed, CrossRef
- Schulz HU, Pross M, Meyer F, Matthias R, Halangk W. Acinar cell respiration in experimental acute pancreatitis. Shock. 1995 Mar;3(3):184-8. PubMed, CrossRef
- Shalbueva N, Mareninova OA, Gerloff A, Yuan J, Waldron RT, Pandol SJ, Gukovskaya AS. Effects of oxidative alcohol metabolism on the mitochondrial permeability transition pore and necrosis in a mouse model of alcoholic pancreatitis. Gastroenterology. 2013 Feb;144(2):437-446.e6. PubMed, PubMedCentral, CrossRef
- Huang W, Booth DM, Cane MC, Chvanov M, Javed MA, Elliott VL, Armstrong JA, Dingsdale H, Cash N, Li Y, Greenhalf W, Mukherjee R, Kaphalia BS, Jaffar M, Petersen OH, Tepikin AV, Sutton R, Criddle DN. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis. Gut. 2014 Aug;63(8):1313-24. PubMed, PubMedCentral, CrossRef
- Voronina SG, Barrow SL, Gerasimenko OV, Petersen OH, Tepikin AV. Effects of secretagogues and bile acids on mitochondrial membrane potential of pancreatic acinar cells: comparison of different modes of evaluating DeltaPsim. J Biol Chem. 2004 Jun 25;279(26):27327-38. PubMed, CrossRef
- Mukherjee R, Mareninova OA, Odinokova IV, Huang W, Murphy J, Chvanov M, Javed MA, Wen L, Booth DM, Cane MC, Awais M, Gavillet B, Pruss RM, Schaller S, Molkentin JD, Tepikin AV, Petersen OH, Pandol SJ, Gukovsky I, Criddle DN, Gukovskaya AS, Sutton R. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 2016 Aug;65(8):1333-46. PubMed, PubMedCentral, CrossRef
- Mankad P, James A, Siriwardena AK, Elliott AC, Bruce JI. Insulin protects pancreatic acinar cells from cytosolic calcium overload and inhibition of plasma membrane calcium pump. J Biol Chem. 2012 Jan 13;287(3):1823-36. PubMed, PubMedCentral, CrossRef
- Schild L, Matthias R, Stanarius A, Wolf G, Augustin W, Halangk W. Induction of permeability transition in pancreatic mitochondria by cerulein in rats. Mol Cell Biochem. 1999 May;195(1-2):191-7. PubMed, CrossRef
- Voronina SG, Barrow SL, Simpson AW, Gerasimenko OV, da Silva Xavier G, Rutter GA, Petersen OH, Tepikin AV. Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells. Gastroenterology. 2010 May;138(5):1976-87. PubMed, PubMedCentral, CrossRef
- Manko BO, Manko VV. Mechanisms of respiration intensification of rat pancreatic acini upon carbachol-induced Ca(2+) release. Acta Physiol (Oxf). 2013 Aug;208(4):387-99. PubMed, CrossRef
- Odinokova IV, Sung KF, Mareninova OA, Hermann K, Evtodienko Y, Andreyev A, Gukovsky I, Gukovskaya AS. Mechanisms regulating cytochrome c release in pancreatic mitochondria. Gut. 2009 Mar;58(3):431-42. PubMed, PubMedCentral, CrossRef
- Choi SW, Gerencser AA, Nicholls DG. Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J Neurochem. 2009 May;109(4):1179-91. PubMed, PubMedCentral, CrossRef
- Dranka BP, Benavides GA, Diers AR, Giordano S, Zelickson BR, Reily C, Zou L, Chatham JC, Hill BG, Zhang J, Landar A, Darley-Usmar VM. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med. 2011 Nov 1;51(9):1621-35. PubMed, PubMedCentral, CrossRef
- Doliba NM, Qin W, Vatamaniuk MZ, Buettger CW, Collins HW, Magnuson MA, Kaestner KH, Wilson DF, Carr RD, Matschinsky FM. Cholinergic regulation of fuel-induced hormone secretion and respiration of SUR1-/- mouse islets. Am J Physiol Endocrinol Metab. 2006 Sep;291(3):E525-35. PubMed, CrossRef
- Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011 Apr 15;435(2):297-312. PubMed, PubMedCentral, CrossRef
- Manko BO, Klevets MY, Manko VV. An implication of novel methodology to study pancreatic acinar mitochondria under in situ conditions. Cell Biochem Funct. 2013 Mar;31(2):115-21. PubMed, CrossRef
- Olson MS, Allgyer TT. The inhibition of L(–)-palmitylcarnitine oxidation by -ketoglutarate in rat liver mitochondria. Biochim Biophys Acta. 1972 May 25;267(2):238-48. PubMed, CrossRef
- Kondrashova MN1, Doliba NM. Polarographic observation of substrate-level phosphorylation and its stimulation by acetylcholine. FEBS Lett. 1989 Jan 30;243(2):153-5. PubMed, CrossRef
- Gordan R, Fefelova N, Gwathmey JK, Xie LH. Involvement of mitochondrial permeability transition pore (mPTP) in cardiac arrhythmias: Evidence from cyclophilin D knockout mice. Cell Calcium. 2016 Dec;60(6):363-372. PubMed, PubMedCentral, CrossRef
- Fukushima D, Doi H, Fukushima K, Katsura K, Ogawa N, Sekiguchi S, Fujimori K, Sato A, Satomi S, Ishida K, Fukushima K. Glutamate exocrine dynamics augmented by plasma glutamine and the distribution of amino acid transporters of the rat pancreas. J Physiol Pharmacol. 2010 Jun;61(3):265-71. PubMed
- Rooman I, Lutz C, Pinho AV, Huggel K, Reding T, Lahoutte T, Verrey F, Graf R, Camargo SM. Amino acid transporters expression in acinar cells is changed during acute pancreatitis. Pancreatology. 2013 Sep-Oct;13(5):475-85. PubMed, CrossRef
- Jin Q, Bethke CM. Kinetics of electron transfer through the respiratory chain. Biophys J. 2002 Oct;83(4):1797-808. PubMed, PubMedCentral, CrossRef
- Brand MD, Hafner RP, Brown GC. Control of respiration in non-phosphorylating mitochondria is shared between the proton leak and the respiratory chain. Biochem J. 1988 Oct 15;255(2):535-9. PubMed, PubMedCentral
- Zhong X, Liang CP, Gong S. Intravenous glutamine for severe acute pancreatitis: A meta-analysis. World J Crit Care Med. 2013 Feb 4;2(1):4-8. PubMed, PubMedCentral, CrossRef
- Huang W, Xiong JJ, Cheng CR, Szatmary P, Chvanov M, Criddle DN, Xia Q, Sutton R. Therapeutic potential of pyruvate in acute pancreatitis: In Vitro findings and a systematic review. Pancreatology. 2016;16(1):S32. CrossRef
