Ukr.Biochem.J. 2019; Том 91, № 6, листопад-грудень, c. 38-48

doi: https://doi.org/10.15407/ubj91.06.038

Регуляція фібринолізу тромбоцитами, що містять на своїй поверхні плазміноген та тканинний активатор

Т. В. Гриненко, О. І. Юсова, О. В. Ревка, І. І. Паталах, Т. А. Яценко

Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
e-mail: sedrickedel@gmail.com

Отримано: 22 липня 2019; Затверджено: 18 жовтня 2019

Тромбоцити відіграють ключову роль у гемостазі як стимулятори тромбіноутворення, як центри полімеризації фібрину та ініціатори ретракції. Менш вивченою залишається їхня здатність до модуляції розчинення згустків. Метою роботи було дослідити взаємодію плазміногену та тканинного активатора з нативними та активованими тромбоцитами, визна­чити кількість плазміну, що генерується за активації плазміногену різними активаторами в присутності тромбоцитів та їхню здатність модулювати швидкість гідролізу полімерного фібрину. У дослідженні було застосовано спектрометричні та імунофлуориметричні методи. Показано, що циркулюючі в крові інтактні тромбоцити несли на своїй поверхні незначну кількість плазміногену, тоді як тромбініндукована активація вела до експонування плазміногензв’язувальних сайтів на  плазматичній мембрані. Активовані тромбоцити стимулювали реакцію активації плазміногену тканинним активатором, урокіназою та стрептокіназою. Вияв­лено, що компоненти протромбінового комплексу підсилювали активацію плазміногену тканинним активатором на поверхні активованих тромбоцитів. У модельній системі з використанням desAB-фібрину встановлено здатність тромбоцитів стимулювати фібриноліз. Одержані результати дозволяють зробити висновок, що регуляція фібринолізу тромбоцитами реалізується через зв’язування плазміногену та активаторів плазміногену на їхній поверхні, завдяки прискоренню генерації плазміну і, відповідно, початку лізису фібрину та зменшенню загального часу існування згустку, що є важливим для підтримання гемостатичного балансу.

Ключові слова: , , , , ,


Посилання:

  1. Heemskerk JW, Mattheij NJ, Cosemans JM. Platelet-based coagulation: different populations, different functions. J Thromb Haemost. 2013 Jan;11(1):2-16. PubMed, CrossRef
  2. Whyte CS, Mitchell JL, Mutch NJ. Platelet-Mediated Modulation of Fibrinolysis. Semin Thromb Hemost. 2017 Mar;43(2):115-128.  PubMed, CrossRef
  3. Brogren H, Karlsson L, Andersson M, Wang L, Erlinge D, Jern S. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood. 2004 Dec 15;104(13):3943-8. PubMed, CrossRef
  4. Brogren H, Wallmark K, Deinum J, Karlsson L, Jern S. Platelets retain high levels of active plasminogen activator inhibitor 1. PLoS One. 2011;6(11):e26762. PubMed, PubMedCentral, CrossRef
  5. Mosnier LO, Buijtenhuijs P, Marx PF, Meijers JC, Bouma BN. Identification of thrombin activatable fibrinolysis inhibitor (TAFI) in human platelets. Blood. 2003 Jun 15;101(12):4844-6. PubMed, CrossRef
  6. Schadinger SL, Lin JH, Garand M, Boffa MB. Secretion and antifibrinolytic function of thrombin-activatable fibrinolysis inhibitor from human platelets. J Thromb Haemost. 2010 Nov;8(11):2523-9. PubMed, CrossRef
  7. Baeten KM, Richard MC, Kanse SM, Mutch NJ, Degen JL, Booth NA. Activation of single-chain urokinase-type plasminogen activator by platelet-associated plasminogen: a mechanism for stimulation of fibrinolysis by platelets. J Thromb Haemost. 2010 Jun;8(6):1313-22. PubMed, CrossRef
  8. Whyte CS, Swieringa F, Mastenbroek TG, Lionikiene AS, Lancé MD, van der Meijden PE, Heemskerk JW, Mutch NJ. Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow. Blood. 2015 Apr 16;125(16):2568-78. PubMed, PubMedCentral, CrossRef
  9. Nieuwenhuizen W. Fibrin-mediated plasminogen activation. Ann N Y Acad Sci. 2001;936:237-46. PubMed, CrossRef
  10. Stepanova VV, Tkachuk VA. Urokinase as a multidomain protein and polyfunctional cell regulator. Biochemistry (Mosc). 2002 Jan;67(1):127-138. (In Russian). PubMed
  11. Carlin SM, Resink TJ, Tamm M, Roth M. Urokinase signal transduction and its role in cell migration. FASEB J. 2005 Feb;19(2):195-202. PubMed, CrossRef
  12. Miles LA, Ginsberg MH, White JG, Plow EF. Plasminogen interacts with human platelets through two distinct mechanisms. J Clin Invest. 1986 Jun;77(6):2001-9. PubMed, PubMedCentral, CrossRef
  13. Tykhomyrov AA, Zhernossekov DD, Grinenko TV. Surface-exposed actin binds plasminogen on the membrane of agonist-activated platelets: a flow cytometry study. Biopolym Cell. 2017;33(3):172-182. CrossRef
  14. Zhernosekov DD, Iusova EI, Grinenko TV. Role of plasminogen/plasmin in functional activity of blood cells. Ukr Biokhim Zhurn. 2012 Jul-Aug;84(4):5-19. (In Russian). PubMed
  15. Horne MK 3rd, Merryman PK, Cullinane AM. Plasminogen interaction with platelets: the importance of carboxyterminal lysines. Thromb Res. 2005;116(6):499-507. PubMed, CrossRef
  16. Vaughan DE, Mendelsohn ME, Declerck PJ, Van Houtte E, Collen D, Loscalzo J. Characterization of the binding of human tissue-type plasminogen activator to platelets. J Biol Chem. 1989 Sep 25;264(27):15869-74. PubMed
  17. Park S, Harker LA, Marzec UM, Levin EG. Demonstration of single chain urokinase-type plasminogen activator on human platelet membrane. Blood. 1989 May 1;73(6):1421-5. PubMed, CrossRef
  18. Deutsch DG, Mertz ET. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095-6. PubMed, CrossRef
  19. Panyim S, Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337-46. PubMed, CrossRef
  20. Voss D. Barium sulphate adsorption and elution of the ‘prothrombin complex’ factors. Scand J Clin Lab Invest. 1965;17(Suppl 84):119. PubMed
  21. Hancock DC, O’Reilly NJ. Production of polyclonal antibodies in rabbits. Methods Mol Biol. 2005;295:27-40. PubMed
  22. Gear AR, Suttitanamongkol S, Viisoreanu D, Polanowska-Grabowska RK, Raha S, Camerini D. Adenosine diphosphate strongly potentiates the ability of the chemokines MDC, TARC, and SDF-1 to stimulate platelet function. Blood. 2001 Feb 15;97(4):937-45. PubMed, CrossRef
  23. Zhernossekov DD, Roka-Moiia YM, Tykhomyrov AO,  Guzyk MM, Grinenko TV. Glu- and Lys-forms of plasminogen differentially affect phosphatidylserine exposure on the platelet surface. Ukr Biochem J. 2017;89(Spec Iss):102-110. CrossRef
  24. Miles LA, Plow EF. Binding and activation of plasminogen on the platelet surface. J Biol Chem. 1985 Apr 10;260(7):4303-11. PubMed
  25. Gao SW, Morser J, McLean K, Shuman MA. Differential effect of platelets on plasminogen activation by tissue plasminogen activator, urokinase, and streptokinase. Thromb Res. 1990 May 15;58(4):421-33. PubMed, CrossRef
  26. Lenich C, Liu JN, Gurewich V. Thrombin stimulation of platelets induces plasminogen activation mediated by endogenous urokinase-type plasminogen activator. Blood. 1997 Nov 1;90(9):3579-86. PubMed, CrossRef
  27. Pryzdial EL, Bajzár L, Nesheim ME. Prothrombinase components can accelerate tissue plasminogen activator-catalyzed plasminogen activation. J Biol Chem. 1995 Jul 28;270(30):17871-7. PubMed, CrossRef
  28. Pryzdial EL, Kessler GE. Autoproteolysis or plasmin-mediated cleavage of factor Xaalpha exposes a plasminogen binding site and inhibits coagulation. J Biol Chem. 1996 Jul 12;271(28):16614-20. PubMed, CrossRef
  29. Talbot K, Meixner SC, Pryzdial EL. Enhanced fibrinolysis by proteolysed coagulation factor Xa. Biochim Biophys Acta. 2010 Apr;1804(4):723-30.  PubMed, CrossRef
  30. Pryzdial EL, Meixner SC, Talbot K, Eltringham-Smith LJ, Baylis JR, Lee FM, Kastrup CJ, Sheffield WP. Thrombolysis by chemically modified coagulation factor Xa. J Thromb Haemost. 2016 Sep;14(9):1844-54. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.