Ukr.Biochem.J. 2020; Том 92, № 5, вересень-жовтень, c. 120-133

doi: https://doi.org/10.15407/ubj92.05.120

Регуляція оксидативного стресу у дріжджів Ogataea polymorpha – продуцента α-синуклеїну людини

Н. В. Грушаник1, О. В. Стасик2, О. Г. Стасик1*

1Львівський національний університет імені Івана Франка, Україна;
2Інститут клітинної біології НАН України, Львів;
*e-mail: olenastasyk@gmail.com

Отримано: 2 березня 2020; Затверджено: 25 червня 2020

У роботі досліджено вплив рівня позаклітинної глюкози на ензиматичну та неензиматичну ланки системи антиоксидантного захисту, а також маркери оксидативного стресу в клітинах метилотрофних дріжджів Ogataea polymorpha, які продукують рекомбінантний протеїн α-синуклеїн людини, задіяний у патогенезі нейродегенеративної хвороби Паркінсона. Встановлено, що дефіцит глюкози зумовлював підвищення активності ензимів антиоксидантного захисту супероксиддисмутази та каталази, вмісту відновленого й окисленого глутатіону в клітинах, культивованих на середовищі з 0,1% глюкози, у порівнянні з фізіологічними умовами (середовище з 1% глюкози). Окрім цього, низька концентрація глюкози в середовищі спричиняла підвищення вмісту карбонільних груп протеїнів і продуктів пероксидного окислення ліпідів. Слід зазначити, що зміщення рівноваги у бік прооксидантних змін було схожим в обох досліджуваних штамів: продуцента людського α-синуклеїну та вихідного батьківського штаму. Таким чином, лімітування глюкози в культуральному середовищі призводило до надпродукції активних форм кисню в клітинах метилотрофних дріжджів незалежно від синтезу рекомбінантного α-синуклеїну людини.

Ключові слова: , , ,


Посилання:

  1. Kalia LV, Lang AE. Parkinson’s disease, Lancet. 2015;386(9996):896-912. PubMed, CrossRef
  2. Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(2):a009399. PubMed, PubMedCentral, CrossRef
  3. Kramer ML, Schulz-Schaeffer WJ. Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci. 2007;27(6):1405-1410. PubMed, PubMedCentral, CrossRef
  4. Sies H, Berndt C, Jones DP. Oxidative Stress. Annu Rev Biochem. 2017;86(1):715-748. PubMed, CrossRef
  5. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci USA. 2011;108(10):4194-4199.  PubMed, PubMedCentral, CrossRef
  6. Zhang Y, Ma H, Xie B, Han C, Wang C, Qing H, Deng Y. Alpha-synuclein overexpression induced mitochondrial damage by the generation of endogenous neurotoxins in PC12 cells. Neurosci Lett. 2013;547:65-69. PubMed, CrossRef
  7. Deas E, Cremades N, Angelova PR, Ludtmann MHR, Yao Z, Chen S, Horrocks MH, Banushi B, Little D, Devine MJ, Gissen P, Klenerman D, Dobson CM, Wood NW, Gandhi S, Abramov AY. Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson’s Disease. Antioxid Redox Signal. 2016;24(7):376-391. PubMed, PubMedCentral, CrossRef
  8. Ahtiluoto S, Polvikoski T, Peltonen M, Solomon A, Tuomilehto J, Winblad B, Sulkava R, Kivipelto M. Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study. Neurology. 2010;75(13):1195-1202. PubMed, CrossRef
  9. Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN, Vom Saal F. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3-33. PubMed, PubMedCentral, CrossRef
  10. Witt SN, Flower TR. alpha-Synuclein, oxidative stress and apoptosis from the perspective of a yeast model of Parkinson’s disease. FEMS Yeast Res. 2006;6(8):1107-1116. PubMed, CrossRef
  11.  Krobitsch S, Lindquist S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci USA. 2000;97(4):1589-1594. PubMed, PubMedCentral, CrossRef
  12. Tenreiro S, Franssens V, Winderickx J, Outeiro TF. Yeast models of Parkinson’s disease-associated molecular pathologies. Curr Opin Genet Dev. 2017;44:74-83. PubMed, CrossRef
  13. Rencus-Lazar S, DeRowe Y, Adsi H, Gazit E, Laor D. Yeast Models for the Study of Amyloid-Associated Disorders and Development of Future Therapy. Front Mol Biosci. 2019;6:15. PubMed, PubMedCentral, CrossRef
  14. Kunze G, Kang HA, Gellissen G. Hansenula polymorpha (Pichia angusta): Biology and applications. Yeast Biotechnology: Diversity and Applications. 2009: 47-64. CrossRef
  15. Denega IO, Klymyshyn NI, Sybirna NO, Stasyk OV, Stasyk OG.. Modeling of molecular processes underlying Parkinson’s disease in cells of methylotrophic yeast Hansenula polymorpha. Stud Biol. 2014; 8(2): 5-16. CrossRef
  16. Stasyk О, Romanyshyn A, Denega I, Klymyshyn N, Stasyk O. Influence of different concentrations of extracellular glucose on cytotoxicity of human α-synuclein in model strains of the yeast Hansenula polymorpha. Visnyk Lviv Univ Ser Biol. 2016;(73):85-95. (in Ukrainian).
  17. Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21(2):130-132. PubMed
  18. Ubiyvovk VM, Ananin VM, Malyshev AY, Kang HA, Sibirny AA. Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1. BMC Biotechnol. 2011;11(1):8. PubMed, PubMedCentral, CrossRef
  19. Dikalov SI, Harrison DG. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal. 2014;20(2):372-382.
    PubMed, PubMedCentral, CrossRef
  20. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97(6):1634-1658.  PubMed, CrossRef
  21. Barros MH, Bandy B, Tahara EB, Kowaltowski AJ. Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem. 2004;279(48):49883-49888. PubMed, CrossRef
  22. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TBL, von Zglinicki T. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007;5(5):e110. PubMed, PubMedCentral, CrossRef
  23. Stasyk OG, Maidan MM, Stasyk OV, Van Dijck P, Thevelein JM, Sibirny AA. Identification of hexose transporter-like sensor HXS1 and functional hexose transporter HXT1 in the methylotrophic yeast Hansenula polymorpha. Eukaryot Cell. 2008;7(4):735-746. PubMed, PubMedCentral, CrossRef
  24. Conway KA, Harper JD, Lansbury PT Jr. Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry. 2000;39(10):2552-2563. PubMed, CrossRef
  25. Outeiro TF, Lindquist S. Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science. 2003;302(5651):1772-1775. PubMed, PubMedCentral, CrossRef
  26. Cooper AA, AGitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Kangning Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s Models. Science. 2006;313(5785):324-328. PubMed, PubMedCentral, CrossRef
  27. Giasson BI, Uryu K, Trojanowski JQ, Lee VM. Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem. 1999;274(12):7619-7622. PubMed, CrossRef
  28. Menezes R, Tenreiro S, Macedo D, Santos CN, Outeiro TF. From the baker to the bedside: yeast models of Parkinson’s disease. Microb Cell. 2015;2(8):262-279. PubMed, PubMedCentral, CrossRef
  29. Winczura A, Zdżalik D, Tudek B. Damage of DNA and proteins by major lipid peroxidation products in genome stability. Free Radic Res. 2012;46(4):442-459. PubMed, CrossRef
  30. Uchida K. Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med. 2000;28(12):1685-1696. PubMed, CrossRef
  31. Halliwell B, Gutteridge JM. Lipid peroxidation in brain homogenates: the role of iron and hydroxyl radicals. J Neurochem. 1997;69(3):1330-1331. PubMed, CrossRef
  32. Avery SV. Molecular targets of oxidative stress. Biochem J. 2011;434(2):201-210. PubMed, CrossRef
  33. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89-96. PubMed, PubMedCentral

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.