Ukr.Biochem.J. 2020; Том 92, № 5, вересень-жовтень, c. 62-69
doi: https://doi.org/10.15407/ubj92.05.062
Реорганізація петельних доменів ДНК у бласт-трансформованих лімфоцитах людини і лімфоїдних лейкемічних Т-клітинах лінії Jurkat
К. Афанасьєва1, В. Олефіренко1, А. Мартиняк1, Л. Лукаш2, А. Сиволоб1*
1Київський національний університет імені Тараса Шевченка, Україна;
2Інститут молекулярної біології і генетики НАН України, Київ;
*e-mail: sivolob@univ.kiev.ua
Отримано: 06 квітня 2020; Затверджено: 25 червня 2020
Петельні домени хроматину – важливі елементи як структури хроматину на вищих рівнях його організації, так і системи регуляції транскрипції. У наших попередніх роботах показано, що деякі важливі риси петельної організації можуть бути досліджені за допомогою кінетичного підходу в електрофорезі ізольованих клітин (кометному електрофорезі). Цю техніку застосовано для оцінки петельної організації ДНК лімфоїдних клітин: лімфоцитів людини; лімфобластів, культивованих протягом 24 і 44 год; злоякісних Т-клітин лінії Jurkat. Встановлено два параметри, що варіюють залежно від функціонального стану клітин. По-перше, частка ДНК у петлях великого розміру більше ~200 тис. пар основ істотно збільшувалась у (дедиференційованих) клітинах, за проліферації порівняно з термінально диференційованими лімфоцитами. По-друге, лінійна щільність петель, розміри яких не перевищують 200 тис. пар основ, знижувалась у транскрипційно активних клітинах та підвищувалась за їх інактивації.
Ключові слова: клітини Jurkat, кометний електрофорез, лімфобласти, лімфоцити, петлі ДНК
Посилання:
- Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet. 2013;14(6):390-403. PubMed, PubMedCentral, CrossRef
- Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden FL. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665-1680. PubMed, PubMedCentral, CrossRef
- Dekker J, Mirny L. The 3D Genome as moderator of chromosomal communication. Cell. 2016;164(6):1110-1121. PubMed, PubMedCentral, CrossRef
- Hansen AS, Cattoglio C, Darzacq X, Tjian R. Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus. 2018;9(1):20-32. PubMed, PubMedCentral, CrossRef
- Sanborn Al, Rao SSP, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke A, Melnikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci USA. 2015;112(47):E6456-E6465. PubMed, PubMedCentral, CrossRef
- Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016;15(9):2038-2049. PubMed, PubMedCentral, CrossRef
- Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, Dekker J, Mirny LA, Bruneau BG. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell. 2017;169(5):930-944. PubMed, PubMedCentral, CrossRef
- Rao SSP, Huang SC, St Hilaire BG, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, Huang X, Shamim MS, Shin J, Turner D, Ye Z, Omer AD, Robinson JT, Schlick T, Bernstein BE, Casellas R, Lander ES, Aiden EL. Cohesin loss eliminates all loop domains. Cell. 2017;171(2):305-320. PubMed, PubMedCentral, CrossRef
- Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S, Jessberger G, Muhar M, Hossain MJ, Walther N, Koch B, Kueblbeck M, Ellenberg J, Zuber J, Fraser P, Peters JM. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 2017;36(24):3573-3599. PubMed, PubMedCentral, CrossRef
- Vian L, Pękowska A, Rao SSP, Kieffer-Kwon KR, Jung S, Baranello L, Huang SC, El Khattabi L, Dose M, Pruett N, Sanborn AL, Canela A, Maman Y, Oksanen A, Resch W, Li X, Lee B, Kovalchuk AL, Tang Z, Nelson S, Di Pierro M, Cheng RR, I Machol, B Glenn St Hilaire, Durand NC, Shamim MS, Stamenova EK, Onuchic JN, Ruan Y, Nussenzweig A, Levens D, Aiden EL, Casellas R. The energetics and physiological impact of cohesin extrusion. Cell. 2018;175(1):292-294. PubMed, PubMedCentral, CrossRef
- Merkenschlager M, Nora EP. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu Rev Genomics Hum Genet. 2016;17:17-43.
PubMed, CrossRef - Hansen AS, Hsieh TS, Cattoglio C, Pustova I, Saldaña-Meyer R, Reinberg D, Darzacq X, Tjian R. Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF. Mol Cell. 2019;76(3):395-411. PubMed, PubMedCentral, CrossRef
- Tang Z, Luo OJ, Li X, Zheng M, Zhu JJ, Szalaj P, Trzaskoma P, Magalska A, Wlodarczyk J, Ruszczycki B, Michalski P, Piecuch E, Wang P, Wang D, Tian SZ, Penrad-Mobayed M, Sachs LM, Ruan X, Wei CL, Liu ET, Wilczynski GM, Plewczynski D, Li G, Ruan Y. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell. 2015;163(7):1611-1627. PubMed, PubMedCentral, CrossRef
- Ji X, Dadon DB, Powell BE, Fan ZP, Borges-Rivera D, Shachar S, Weintraub AS, Hnisz D, Pegoraro G, Lee TI, Misteli T, Jaenisch R, Young RA. 3D chromosome regulatory landscape of human pluripotent cells. Cell Stem Cell. 2016;18(2):262-275. PubMed, PubMedCentral, CrossRef
- Kieffer-Kwon KR, Nimura K, Rao SSP, Xu J, Jung S, Pekowska A, Dose M, Stevens E, Mathe E, Dong P, Huang SC, Ricci MA, Baranello L, Zheng Y, Ardori FT, Resch W, Stavreva D, Nelson S, McAndrew M, Casellas A, Finn E, Gregory C, St Hilaire BG, Johnson SM, Dubois W, Cosma MP, Batchelor E, Levens D, Phair RD, Misteli T, Tessarollo L, Hager G, Lakadamyali M, Liu Z, Floer M, Shroff H, Aiden EL, Casellas R. Myc regulates chromatin decompaction and nuclear architecture during B cell activation. Mol Cell. 2017;67(4):566-578. PubMed, PubMedCentral, CrossRef
- Bonev B, Cohen NM, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, Xu X, Lv X, Hugnot JP, Tanay A, Cavalli G. Multiscale 3D genome rewiring during mouse neural development. Cell. 2017;171(3):557-572. PubMed, PubMedCentral, CrossRef
- Pękowska A, Klaus B, Xiang W, Severino J, Daigle N, Klein FA, Oleś M, Casellas R, Ellenberg J, Steinmetz LM, Bertone P, Huber W. Gain of CTCF-anchored chromatin loops marks the exit from naive pluripotency. Cell Syst. 2018;7(5):482-495. PubMed, PubMedCentral, CrossRef
- Afanasieva K, Sivolob A. Physical principles and new applications of comet assay. Biophys Chem. 2018;238:1-7. PubMed, CrossRef
- Afanasieva K, Zazhytska M, Sivolob A. Kinetics of comet formation in single-cell gel electrophoresis: loops and fragments. Electrophoresis. 2010;31(3):512-519. PubMed, CrossRef
- Afanasieva K, Chopei M, Zazhytska M, Vikhreva M, Sivolob A. DNA loop domain organization as revealed by single-cell gel electrophoresis. Biochim Biophys Acta. 2013;1833(12):3237-3244. PubMed, CrossRef
- Afanasieva K, Chopei M, Sivolob A. Single nucleus versus single-cell gel electrophoresis: kinetics of DNA track formation. Electrophoresis. 2015;36(7-8):973-977. PubMed, CrossRef
- Afanasieva K, Chopei M, Lozovik A, Semenova A, Lukash L, Sivolob A. DNA loop domain organization in nucleoids from cells of different types. Biochem Biophys Res Commun. 2017;483(1):142-146. PubMed, CrossRef
- Kaplan O, Aebersold P, Cohen JS. Metabolism of peripheral lymphocytes, interleukin-2-activated lymphocytes and tumor-infiltrating lymphocytes from 31P NMR studies. FEBS Lett. 1989;258(1):55-58. PubMed, CrossRef
- Mookerjee BK, Pauly JL. Mitogenic effect of interleukin-2 on unstimulated human T cells: an editorial review. J Clin Lab Anal. 1990;4(2):138-149. PubMed, CrossRef
- Mzali R, Seguin L, Liot C, Auger A, Pacaud P, Loirand G, Thibault C, Pierre J, Bertoglio J. Regulation of Rho signaling pathways in interleukin-2-stimulated human T-lymphocytes. FASEB J. 2005;19(13):1911-1913. PubMed, CrossRef
- Bachmann MF, Oxenius A. Interleukin 2: from immunostimulation to immunoregulation and back again. EMBO Rep. 2007;8(12): 1142-1148. PubMed, PubMedCentral, CrossRef
- Abraham RT, Weiss A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol. 2004;4(4):301-308. PubMed, CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.