Ukr.Biochem.J. 2020; Том 92, № 6, листопад-грудень, c. 126-136
doi: https://doi.org/10.15407/ubj92.06.126
Оксидантно/антиоксидантний баланс та рівень матричних металопротеїназ у щурів з експериментальним остеоартритом за введення пробіотика
О. Короткий*, К. Дворщенко, Л. Кот, Т. Вовк, М. Тимошенко, Л. Остапченко
ННЦ «Інститут біології та медицини», Київський національний університет імені Тараса Шевченка, Україна;
*e-mail: korotkyi@gmail.com
Отримано: 28 червня 2020; Затверджено: 13 листопада 2020
У роботі досліджували вплив багатокомпонентного пробіотика на оксидантно/антиоксидантний баланс та рівень матричних металопротеїназ (MMP) у хрящовій тканині колінного суглоба щурів за експериментального остеоартриту. Остеоартрит (ОА) було індуковано одноразовою ін’єкцією монойодоацетату в колінний суглоб щурів. Введення пробіотика проводили щодня протягом 14 днів. У гомогенізованих хрящах коліна щурів оцінювали вміст активних форм кисню (супероксид-аніон та пероксид водню), продуктів пероксидного окислення ліпідів (дієнових кон’югатів, ТБК-активних продуктів, шиффових основ) та визначали активність супероксиддисмутази, каталази, глутатіонзалежних антиоксидантних ензимів і рівень відновленого/окисленого глутатіону. Рівень експресії MMP-1, -2, -3, -8 визначали методом ELISA. Показано, що за остеоартриту в щурів значно підвищувалися вміст активних форм кисню та продуктів пероксидного окислення ліпідів, активність супероксиддисмутази та каталази, а також рівень всіх досліджуваних MMP, у той самий час спостерігали виснаження глутатіонзалежної антиоксидантної системи та зменшення співвідношення між відновленим та окисленим глутатіоном. За введення пробіотика в щурів з ОА спостерігали тенденцію відновлення параметрів до значень контрольної групи. Таким чином, введення пробіотика щурам із остеоартритом може розглядатися як протизапальний та антиоксидантний засіб у подальших клінічних випробуваннях.
Ключові слова: вільнорадикальні процеси, глутатіон, матричні металопротеїнази, остеоартрит, пробіотик
Посилання:
- Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393(10182):1745-1759. PubMed, CrossRef
- O’Neill TW, McCabe PS, McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Pract Res Clin Rheumatol. 2018;32(2):312-326. PubMed, CrossRef
- Korotkyi O, Kyriachenko Y, Kobyliak N, Falalyeyeva T, Ostapchenko L. Crosstalk between gut microbiota and osteoarthritis: A critical view. J Funct Foods. 2020; 68: 103904. CrossRef
- Man GS, Mologhianu G. Osteoarthritis pathogenesis – a complex process that involves the entire joint. J Med Life. 2014;7(1):37-41. PubMed, PubMedCentral
- Vitetta L, Coulson S, Linnane AW, Butt H. The gastrointestinal microbiome and musculoskeletal diseases: a beneficial role for probiotics and prebiotics. Pathogens. 2013;2(4):606-626. PubMed, PubMedCentral, CrossRef
- Bravo-Blas A, Wessel H, Milling S. Microbiota and arthritis: correlations or cause? Curr Opin Rheumatol. 2016;28(2):161-167. PubMed, CrossRef
- Fomenko I, Bondarchuk T, Emelyanenko V, Denysenko N, Sklyarov P, Ilkiv I, Lesyk R, Sklyarov A. Changes of nitric oxide system and lipid peroxidation parameters in the digestive system of rats under conditions of acute stress, and use of nonsteroidal anti-inflammatory drugs. Curr Issues Pharm Med Sci. 2015; 28(1): 37-41. CrossRef
- Korotkyi OH, Luhovska TV, Serhiychuk TM, Dvorshchenko KO, Falalyeyeva TM, Ostapchenko LI. The gut microbiota of rats under experimental osteoarthritis and administration of chondroitin sulfate and probiotic. Mikrobiol Z. 2020; 82(6): 64-73. CrossRef
- Dvorshchenko KO, Bernyk OO, Dranitsina AS, Senin SA, Ostapchenko LI. Influence of oxidative stress on the level of genes expression TGFB1 and HGF in rat liver upon long-term gastric hypochlorhydria and administration of multiprobiotic Symbiter. Ukr Bikhim Zhurn. 2013;85(5):114-123. (In Ukrainian). PubMed, CrossRef
- Dvorshchenko KO, Vakal SI, Dranitsina AS, Senin SA, Ostapchenko LI. Stress-responsive systems in rat pancreas upon long-term gastric hypochlorhydria and administration of multiprobiotic “Symbiter”. Ukr Biokhim Zhurn. 2013;85(2):68-77. (In Ukrainian). PubMed, CrossRef
- Korotkyi O, Dvorshchenko K, Falalyeyeva T, Sulaieva O, Kobyliak N, Abenavoli L, Fagoonee S, Pellicano R, Ostapchenko L. Combined effects of probiotic and chondroprotector during osteoarthritis in rats. Panminerva Med. 2020;62(2):93-101. PubMed, CrossRef
- Drevet S, Gavazzi G, Grange L, Dupuy C, Lardy B. Reactive oxygen species and NADPH oxidase 4 involvement in osteoarthritis. Exp Gerontol. 2018;111:107-117. PubMed, CrossRef
- Baragi VM, Becher G, Bendele AM, Biesinger R, Bluhm H, Boer J, Deng H, Dodd R, Essers M, Feuerstein T, Gallagher BM Jr, Gege C, Hochgürtel M, Hofmann M, Jaworski A, Jin L, Kiely A, Korniski B, Kroth H, Nix D, Nolte B, Piecha D, Powers TS, Richter F, Schneider M, Steeneck C, Sucholeiki I, Taveras A, Timmermann A, Van Veldhuizen J, Weik J, Wu X, Xia B. A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: Evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models. Arthritis Rheum. 2009;60(7):2008-2018. PubMed, CrossRef
- Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci. 2019;234:116786. PubMed, CrossRef
- Korotkyi O, Vovk A, Galenova T, Vovk T, Dvorshchenko K, Luzza F, Abenavoli L, Kobyliak N, Falalyeyeva T, Ostapchenko L. Effect of probiotic on serum cytokines and matrix metalloproteinases profile during monoiodoacetate-induced osteoarthritis in rats. Minerva Biotecnol. 2019;31(2):68-73. CrossRef
- Korotkyi O, Dvorshchenko K, Vovk A, Dranitsina A, Tymoshenko M, Kot L, Ostapchenko L. Effect of probiotic composition on oxidative/antioxidant balance in blood of rats under experimental osteoarthritis. Ukr Biochem J. 2019; 91(6): 49-58. CrossRef
- Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol. 2003;31(6):619-624. PubMed, CrossRef
- Multiprobiotic Symbiter acidophilus. Regime of access : https://symbiter.ua/uk/multiprobiotics-symbiter-ua/symbiter-acidophilic-ua.html (last accessed 17.07.2020).
- Able AJ, Guest DI, Sutherland MW. Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of phytophthora parasitica var nicotianae. Plant Physiol. 1998;117(2):491-499. PubMed, PubMedCentral, CrossRef
- Jiang ZY, Woollard AC, Wolff SP. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 1990;268(1):69-71. PubMed, CrossRef
- Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP. Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem. 1994;220(2):403-409. PubMed, CrossRef
- Gavrilov VB, Gavrilova AR, Khmara NF. Measurement of diene conjugates in blood plasma using the UV absorption of heptane and isopropanol extracts. Lab Delo. 1988;(2):60-64. (In Russian). PubMed
- Kolesova OE, Markin AA, Fedorova TN. Lipid peroxidation and methods of determining its products in biological media. Lab Delo. 1984;(9):540-546. (In Russian). PubMed
- Stalnaia ID, Garishvili TG. A method for determination of malondialdehyde with tiobarbituric acid. Modern methods in biochemistry. M.: Meditsina, 1977. P. 66-68 (In Russian).
- Chevari S, Chaba I, Sekei I. Role of superoxide dismutase in cellular oxidative processes and method of its determination in biological materials. Lab Delo. 1985;(11):678-681. (In Russian). PubMed
- Koroliuk MA, Ivanova LK, Maiorova IG, Tokarieva VA. A method for determination of catalase. Lab Delo. 1988;(4): 44-47. (In Russian).
- Vlasova SN, Shabunina EI, Pereslegina IA.The activity of the glutathione-dependent enzymes of erythrocytes in chronic liver diseases in children. Lab Delo. 1990;(8):19-22. (In Russian). PubMed
- Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74(1):214-226. PubMed, CrossRef
- Mokrasch LC, Teschke EJ. Glutathione content of cultured cells and rodent brain regions: a specific fluorometric assay. Anal Biochem. 1984;140(2):506-509. PubMed, CrossRef
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275. PubMed
- Malfait AM. Osteoarthritis year in review 2015: biology. Osteoarthritis Cartilage. 2016;24(1):21-26. PubMed, PubMedCentral, CrossRef
- Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta. 2016;1862(4):576-591. PubMed, CrossRef
- Afonso V, Champy R, Mitrovic D, Collin P, Lomri A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 2007;74(4):324-329. PubMed, CrossRef
- Na JY, Song K, Kim S, Kwon J. Rutin protects rat articular chondrocytes against oxidative stress induced by hydrogen peroxide through SIRT1 activation. Biochem Biophys Res Commun. 2016;473(4):1301-1308. PubMed, CrossRef
- Xue L, Li X, Chen Q, He J, Dong Y, Wang J, Shen S, Jia R, Zang QJ, Zhang T, Li M, Geng Y. Associations between D3R expression in synovial mast cells and disease activity and oxidant status in patients with rheumatoid arthritis. Clin Rheumatol. 2018;37(10):2621-2632. PubMed, CrossRef
- Yin G, Li Y, Yang M, Cen XM, Xie QB. Pim-2/mTORC1 Pathway Shapes Inflammatory Capacity in Rheumatoid Arthritis Synovial Cells Exposed to Lipid Peroxidations. Biomed Res Int. 2015;2015:240210. PubMed, PubMedCentral, CrossRef
- Shan L, Tong L, Hang L, Fan H. Fangchinoline supplementation attenuates inflammatory markers in experimental rheumatoid arthritis-induced rats. Biomed Pharmacother. 2019;111:142-150. PubMed, CrossRef
- Rieder B, Weihs AM, Weidinger A, Szwarc D, Nürnberger S, Redl H, Rünzler D, Huber-Gries C, Teuschl AH. Hydrostatic pressure-generated reactive oxygen species induce osteoarthritic conditions in cartilage pellet cultures. Sci Rep. 2018;8(1):17010. PubMed, PubMedCentral, CrossRef
- van Dalen SCM, Kruisbergen NNL, Walgreen B, Helsen MMA, Slöetjes AW, Cremers NAJ, Koenders MI, van de Loo FAJ, Roth J, Vogl T, Blom AB, van der Kraan PM, van Lent PLEM, van den Bosch MHJ. The role of NOX2-derived reactive oxygen species in collagenase-induced osteoarthritis. Osteoarthritis Cartilage. 2018;26(12):1722-1732. PubMed, CrossRef
- Abusarah J, Bentz M, Benabdoune H, Rondon PE, Shi Q, Fernandes JC, Fahmi H, Benderdour M. An overview of the role of lipid peroxidation-derived 4-hydroxynonenal in osteoarthritis. Inflamm Res. 2017;66(8):637-651. PubMed, CrossRef
- Vnukov VV, Krolevets IV, Milutina NP, Gutsenko OI, Zabrodin MA, Panina SB, Gvaldin DYu, Plotbikov AA, Shevyakova EA,Braznikov YuI. Free radical oxidation in synovial fluid and apoptosis of chondrocytes in osteoarthritis of knee. Valeology. 2012;(4):38-44. (In Russian).
- Wu Q, Zhong ZM, Zhu SY, Liao CR, Pan Y, Zeng JH, Zheng S, Ding RT, Lin QS, Ye Q, Ye WB, Li W, Chen JT. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway. Apoptosis. 2016;21(1):36-50. PubMed, CrossRef
- He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol Biochem. 2017;44(2):532-553. PubMed, CrossRef
- Zahan OM, Serban O, Gherman C, Fodo D. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep. 2020;93(1):12-22. PubMed, PubMedCentral,CrossRef
- Iolascon G, Gimigliano F, Moretti A, de Sire A, Migliore A, Brandi ML, Piscitelli P. Early osteoarthritis: How to define, diagnose, and manage. A systematic review. Eur Geriatr Med. 2017;8(5-6): 383-396. CrossRef
- Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017; 147: 1-73. CrossRef
- Li H, Xie S, Qi Y, Li H, Zhang R, Lian Y. TNF-α increases the expression of inflammatory factors in synovial fibroblasts by inhibiting the PI3K/AKT pathway in a rat model of monosodium iodoacetate-induced osteoarthritis. Exp Ther Med. 2018;16(6):4737-4744. PubMed, PubMedCentral, CrossRef
- Malemud CJ. Matrix Metalloproteinases and Synovial Joint Pathology. Prog Mol Biol Transl Sci. 2017;148:305-325. PubMed, CrossRef
- Korotkyi O, Vovk A, Blokhina O, Dvorshchenko K, Falalyeyeva T, Abenavoli L, Ostapchenko L. Effect of Chondroitin Sulfate on Blood Serum Cytokine Profile during Carrageenan-induced Edema and Monoiodoacetate-induced Osteoarthritis in Rats. Rev Recent Clin Trials. 2019;14(1):50-55.
PubMed, CrossRef - Dranitsina AS, Dvorshchenko KO, Korotkyi AG, Grebinyk DM, Ostapchenko LI. Expression of Ptgs2 and Tgfb1 Genes in Rat Cartilage Cells of the Knee under Conditions of Osteoarthritis. Cytol Genet. 2018;52(3): 192-197. CrossRef
- Dranitsina AS, Dvorshchenko KO, Korotkyi OH, Vovk AA, Falalyeyeva TM, Grebinyk DM, Ostapchenko LI. Expression of Nos2 and Acan Genes in Rat Knee Articular Cartilage in Osteoarthritis. Cytol Genet. 2019; 53(6): 481-488. CrossRef
- Korotkyi OH, Vovk AA, Dranitsina AS, Falalyeyeva TM, Dvorshchenko KO, Fagoonee S, Ostapchenko LI. The influence of probiotic diet and chondroitin sulfate administration on Ptgs2, Tgfb1 and Col2a1 expression in rat knee cartilage during monoiodoacetate-induced osteoarthritis. Minerva Med. 2019;110(5):419-424. PubMed, CrossRef
- Korotkyi O, Vovk A, Kuryk O, Dvorschenko K, Falalyeyeva T, Ostapchenko L. Co-administration of live probiotics with chondroprotector in management of experimental knee osteoarthritis. Georgian Med News. 2018;(279):191-196. PubMed
- Korotkyi OH, Vovk AA, Halenova TI, Vovk TB, Dvorshchenko KO, Falalyeyeva TM, Ostapchenko LI. Cytokines profile in knee cartilage of rats during monoiodoacetate-induced osteoarthritis and administration of probiotic. Biopolym Cell. 2020;36(1):22-34. CrossRef
- Kompanets I, Korotkiy A, Karpovets T, Ostapchenko L, Pilipenko S, Yankovskiy D. The interferon production and 2′,5′-oligoadenylate-synthetase activity in rat spleen lymphocytes at hypoacidity evoked by omeprazole injection and at administration of multiprobiotic «SYMBITER®». Curr Issues Pharma Med Sci. 2013; 26(4): 398-400. CrossRef
- Xu C, Shi Z, Shao J, Yu C, Xu Z. Metabolic engineering of Lactococcus lactis for high level accumulation of glutathione and S-adenosyl-L-methionine. World J Microbiol Biotechnol. 2019;35(12):185. PubMed, CrossRef
- Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy JM, Dequenne I6 , de Timary P, Cani PD. How Probiotics Affect the Microbiota. Front Cell Infect Microbiol. 2020;9:454. PubMed, PubMedCentral, CrossRef
