Ukr.Biochem.J. 2020; Том 92, № 6, листопад-грудень, c. 53-62
doi: https://doi.org/10.15407/ubj92.06.053
Реплікативна CMG-геліказа: ідеальна мішень для таргетної терапії раку
W. Henderson, K. Nyman, M. Stoney, S. I. Borysov*
College of Arts and Sciences, Saint Leo University, St. Leo, Florida, USA;
*e-mail: Sergiy.Borysov@saintleo.edu
Отримано: 31 травня 2020; Затверджено: 13 листопада 2020
Огляд присвячено Cdc45-Mcm2-7-GINS (CMG) геліказі, яка є важливою складовою реплікативного механізму і розглядається як нова перспективна мішень для таргетної терапії раку. У нормальних клітинах під час реплікації геному поступово, шляхом залучення необхідної кількості субодиниць, активується лише невелика частина геліказ, решта складають значний пул сплячих геліказ та можуть бути активовані у разі необхідності для заміщення геліказ із пригніченою активністю, завдяки чому нормальна клітина має стійкість до інгібіторів геліказ. Відомо, що на відміну від нормальних клітин ракові клітини мають значно менший пул сплячих геліказ і через це мають бути вразливішими до інгібіторів CMG-геліказ. Функціональні дослідження підтверджують, що таргетне пригнічення CMG-гелікази може стати специфічним терапевтичним підходом у подоланні широкого спектра онкологічних захворювань та у мінімізації побічних ефектів. Передбачається, що препарати спрямованої дії на CMG-геліказу можуть використовуватися не тільки для самостійної терапії, а й як хіміосенсибілізатори в поєднанні з іншими ліками для підвищення їх клінічного ефекту.
Ключові слова: інгібітори гелікази, ракові клітини, реплікативна CMG-геліказа, сплячі гелікази
Посилання:
- Cancer statistics. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/cancer (accessed, May, 2020).
- Worldwide cancer statistics. Cancer Research UK. 2015; https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer (accessed, May, 2020).
- Global cancer facts & figures. American Cancer Society. https://www.cancer.org/research/cancer-facts-statistics/global.html (accessed, May, 2020).
- Stewart BW and Wild CW. World cancer report. 2014; Lyon: IARC Press.
- The global cancer burden. American Cancer Society. https://www.cancer.org/health-care-professionals/our-global-health-work/global-cancer-burden.html (accessed, May, 2020).
- Cancer Treatments, 2019; Cancer Quest http://www.cancerquest.org/patients/treatments (accessed, October, 2019).
- Radiation therapy. National Cancer Institute. 2015 https://www.cancer.gov/about-cancer/treatment/types/radation-therapy (accessed, September, 2019).
- Chemotherapy. Cancer Quest. https://www.cancerquest.org/patients/treatments/chemotherapy (accessed, September, 2019).
- How chemotherapy works. Cancer Research UK. https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/chemotherapy/how-chemotherapy-works (accessed, September, 2019).
- Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14(1):73. PubMed, PubMedCentral, CrossRef
- Siddiqui K, On KF, Diffley JFX. Regulating DNA replication in eukarya. Cold Spring Harb Perspect Biol. 2013;5(9):a012930. PubMed, PubMedCentral, CrossRef
- Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J. 2016;283(2):232-245. PubMed, CrossRef
- Bochman ML. Roles of DNA helicases in the maintenance of genome integrity. Mol Cell Oncol. 2014;1(3):e963429. PubMed, PubMedCentral, CrossRef
- Maine GT, Sinha P, Tye BK. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics. 1984;106(3):365-385.
PubMed, PubMedCentral - Gómez EB, Catlett MG, Forsburg SL. Different phenotypes in vivo are associated with ATPase motif mutations in Schizosaccharomyces pombe minichromosome maintenance proteins. Genetics. 2002;160(4):1305-1318. PubMed, PubMedCentral
- Davey MJ, Indiani C, O’Donnell M. Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J Biol Chem. 2003;278(7):4491-4499. PubMed, CrossRef
- Miller JM, Arachea BT, Epling LB, Enemark EJ. Analysis of the crystal structure of an active MCM hexamer. Elife. 2014;3:e03433. PubMed, PubMedCentral, CrossRef
- Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37(2):247-258. PubMed, PubMedCentral, CrossRef
- Kang YH, Galal WC, Farina A, Tappin I, Hurwitz J. Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc Natl Acad Sci USA. 2012;109(16):6042-6047. PubMed, PubMedCentral, CrossRef
- Aladjem MI. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet. 2007;8(8):588-600. PubMed, CrossRef
- Jatikusumo VA. Treslin and its role in the assembly of the replicative DNA helicase (Doctoral thesis). University of Cambridge. 2020. https://doi.org/10.17863/CAM.48462.
- Wong PG, Winter SL, Zaika E, Cao TV, Oguz U, Koomen JM, Hamlin JL, Alexandrow MG. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS One. 2011;6(3):e17533. PubMed, PubMedCentral, CrossRef
- Pollok S, Bauerschmidt C, Sänger J, Nasheuer HP, Grosse F. Human Cdc45 is a proliferation-associated antigen. FEBS J. 2007;274(14):3669-3684. PubMed, CrossRef
- Kamada K. The GINS complex: structure and function. Subcell Biochem. 2012;62:135-156. PubMed, CrossRef
- Chang YP, Wang G, Bermudez V, Hurwitz J, Chen XS. Crystal structure of the GINS complex and functional insights into its role in DNA replication. Proc Natl Acad Sci USA. 2007;104(31):12685-12690. PubMed, PubMedCentral, CrossRef
- Kamada K, Kubota Y, Arata T, Shindo Y, Hanaoka F. Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat Struct Mol Biol. 2007;14(5):388-396. PubMed, CrossRef
- Choi JM, Lim HL, Kim JJ, Song OK, Cho Y. Crystal structure of the human GINS complex. Genes Dev. 2007;21(11):1316-1321. PubMed, PubMedCentral, CrossRef
- Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003;17(9):1153-1165. PubMed, PubMedCentral, CrossRef
- Boskovic J, Coloma J, Aparicio T, Zhou M, Robinson CV, Méndez J, Montoya G. Molecular architecture of the human GINS complex. EMBO Rep. 2007;8(7):678-684. PubMed, PubMedCentral, CrossRef
- MacNeill SA. Structure and function of the GINS complex, a key component of the eukaryotic replisome. Biochem J. 2010;425(3):489-500. PubMed, CrossRef
- Makarova KS, Koonin EV, Kelman Z. The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol Direct. 2012;7:7. PubMed, PubMedCentral, CrossRef
- Noguchi Y, Yuan Z, Bai L , Schneider S, Zhao G, Stillman B, Speck C, Li H. Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model. Proc Natl Acad Sci USA. 2017;114(45):E9529-E9538. PubMed, PubMedCentral, CrossRef
- Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O’Donnell ME, Li H. Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol. 2016;23(3):217-224. PubMed, PubMedCentral, CrossRef
- Langston L, O’Donnell M. Action of CMG with strand-specific DNA blocks supports an internal unwinding mode for the eukaryotic replicative helicase. Elife. 2017;6:e23449. PubMed, PubMedCentral, CrossRef
- Georgescu R, Yuan Z, Bai L, de Luna Almeida Santos R, Sun J, Zhang D, Yurieva O, Li H, O’Donnell ME. Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. Proc Natl Acad Sci USA. 2017;114(5):E697-E706. PubMed, PubMedCentral, CrossRef
- Yuan Z, Georgescu R, Bai L, Zhang D, Li H, O’Donnell ME. DNA unwinding mechanism of a eukaryotic replicative CMG helicase. Nat Commun. 2020;11(1):688. PubMed, PubMedCentral, CrossRef
- Riera A, Barbon M, Noguch Y, Reuter LM, Schneider S, Speck C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev. 2017;31(11):1073-1088. PubMed, PubMedCentral, CrossRef
- Klemm RD, Austin RJ, Bell SP. Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex. Cell. 1997;88(4):493-502. PubMed, CrossRef
- Liu J, Smith CL, DeRyckere D, DeAngelis K, Martin GS, Berger JM. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Mol Cell. 2000;6(3):637-648. PubMed, CrossRef
- Bell SP, Kaguni JM. Helicase loading at chromosomal origins of replication. Cold Spring Harb Perspect Biol. 2013;5(6):a010124. PubMed, PubMedCentral, CrossRef
- Bochman ML, Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol Cell. 2008;31(2):287-293. PubMed, CrossRef
- Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol. 2011;18(4):471-477. PubMed, PubMedCentral, CrossRef
- Randell JCW, Bowers JL, Rodríguez HK, Bell SP. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell. 2006;21(1):29-39. PubMed, CrossRef
- Evrin C, Clarke P, Zech J, Rudi L, Sun J, Uhle S, Li H, Stillman B, Speck C. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci USA. 2009;106(48):20240-20245. PubMed, PubMedCentral, CrossRef
- Shima N, Pederson KD. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development. DNA Repair (Amst). 2017;56:166-173. PubMed, PubMedCentral, CrossRef
- Blow JJ, Ge XQ, Jackson DA. How dormant origins promote complete genome replication. Trends Biochem Sci. 2011;36(8):405-414. PubMed, PubMedCentral, CrossRef
- Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37(2):247-258. PubMed, PubMedCentral, CrossRef
- Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma. 2015;124(1):13-26. PubMed, CrossRef
- Dewar JM, Budzowska M, Walter JC. The mechanism of DNA replication termination in vertebrates. Nature. 2015;525(7569):345-350. PubMed, PubMedCentral, CrossRef
- Moreno SP, Bailey R, Campion N, Herron S, Gambus A. Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science. 2014;346(6208):477-481. PubMed, CrossRef
- Deegan TD, Mukherjee PP, Fujisawa R, Rivera CP, Labib K. CMG helicase disassembly is controlled by replication fork DNA, replisome components and a ubiquitin threshold. Elife. 2020;9:e60371. PubMed, PubMedCentral, CrossRef
- Woodward AM, Göhler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol. 2006;173(5):673-683. PubMed, PubMedCentral, CrossRef
- Ge XQ, Jackson DA, Blow JJ. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 2007;21(24):3331-3341. PubMed, PubMedCentral, CrossRef
- Ibarra A, Schwob E, Méndez J. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad Sci USA. 2008;105(26):8956-8961. PubMed, PubMedCentral, CrossRef
- Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, Botchan MR, Shima N. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell. 2011;41(5):543-553. PubMed, PubMedCentral, CrossRef
- Shreeram S, Sparks A, Lane DP, Blow JJ. Cell type-specific responses of human cells to inhibition of replication licensing. Oncogene. 2002;21(43):6624-6632. PubMed, PubMedCentral, CrossRef
- Lau E, Chiang GG, Abraham RT, Jiang W. Divergent S phase checkpoint activation arising from prereplicative complex deficiency controls cell survival. Mol Biol Cell. 2009;20(17):3953-3964. PubMed, PubMedCentral, CrossRef
- Zimmerman KM, Jones RM, Petermann E, Jeggo PA. Diminished origin-licensing capacity specifically sensitizes tumor cells to replication stress. Mol Cancer Res. 2013;11(4):370-380. PubMed, PubMedCentral, CrossRef
- Toyokawa G, Masuda K, Daigo Y, Cho HS, Yoshimatsu M, Takawa M, Hayami S, Maejima K, Chino M, Field HI, Neal DE, Tsuchiya Eiju , Ponder BAJ, Maehara Y, Nakamura Y, Hamamoto R. Minichromosome Maintenance Protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer. Mol Cancer. 2011;10:65. PubMed, PubMedCentral, CrossRef
- Bryant VL, Elias RM, McCarthy SM, Yeatman TJ, Alexandrow MG. Suppression of Reserve MCM Complexes Chemosensitizes to Gemcitabine and 5-Fluorouracil. Mol Cancer Res. 2015;13(9):1296-1305. PubMed, PubMedCentral, CrossRef
- Majid S, Dar AA, Saini S, Chen Y, Shahryari V, Liu J, Zaman MS, Hirata H, Yamamura S, Ueno K, Tanaka Y, Dahiya R. Regulation of minichromosome maintenance gene family by microRNA-1296 and genistein in prostate cancer. Cancer Res. 2010;70(7):2809-2818. PubMed, CrossRef
- Liu Y, He G, Wang Y, Guan X, Pang X, Zhang B. MCM-2 is a therapeutic target of Trichostatin A in colon cancer cells. Toxicol Lett. 2013;221(1):23-30. PubMed, CrossRef
- Kwon HJ, Hong YK, Park C, Choi YH, Yun HJ, Lee EW, Kim BW. Widdrol induces cell cycle arrest, associated with MCM down-regulation, in human colon adenocarcinoma cells. Cancer Lett. 2010;290(1):96-103. PubMed, CrossRef
- Kim SH, Kim SC, Ku JL. Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5-Fu resistant colorectal cancer cells. Oncotarget. 2017;8(34):56546-56557. PubMed, PubMedCentral, CrossRef
- Mio C, Lavarone E, Conzatti K, Baldan F, Toffoletto B, Puppin C, Filetti S, Durante C, Russo D, Orlacchio A, Di Cristofano A, Di Loreto C, Damante G. MCM5 as a target of BET inhibitors in thyroid cancer cells. Endocr Relat Cancer. 2016;23(4):335-347. PubMed, PubMedCentral, CrossRef
- 66. Guan YB , Yang DR, Nong SJ, Ni J, Hu CH, Li J, Zhu J, Shan YX. Breviscapine (BVP) inhibits prostate cancer progression through damaging DNA by minichromosome maintenance protein-7 (MCM-7) modulation. Biomed Pharmacother. 2017;93:103-116. PubMed, CrossRef
- Ishimi Y, Sugiyama T, Nakaya R, Kanamori M, Kohno T, Enomoto T, Chino M. Effect of heliquinomycin on the activity of human minichromosome maintenance 4/6/7 helicase. FEBS J. 2009;276(12):3382-3391. PubMed, CrossRef
- Simon N, Bochman ML, Seguin S, Brodsky JL, Seibel WL, Schwacha A. Ciprofloxacin is an inhibitor of the Mcm2-7 replicative helicase. Biosci Rep. 2013;33(5):e00072. PubMed, PubMedCentral, CrossRef
- Shahabadi N, Asadian AA, Mahdavi M. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs. Nucleosides Nucleotides Nucleic Acids. 2017;36(11):676-689. PubMed, CrossRef
- Majalekar PP, Shirote PJ. Fluoroquinolones: Blessings Or Curses. Curr Drug Targets. 2020;21(13):1354-1370. PubMed, CrossRef
- Abdel-Aal MAA, Abdel-Aziz SA, Shaykoon MSA, Abuo-Rahma GEDA. Towards anticancer fluoroquinolones: A review article. Arch Pharm (Weinheim). 2019;352(7):e1800376. PubMed, CrossRef
