Ukr.Biochem.J. 2021; Том 93, № 1, січень-лютий, c. 30-39
doi: https://doi.org/10.15407/ubj93.01.030
Споживання протеїнів та втрата протеостазу під час старіння
A. N. Kirana1, E. Prafiantini1, N. S. Hardiany2,3*
1Department of Nutrition, Faculty of Medicine, Universitas Indonesia – Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia;
2Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia;
3Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia;
*e-mail: novi.silvia@ui.ac.id
Отримано: 29 червня 2020; Затверджено: 17 грудня 2020
Cтаріння – це процес зниження функцій організму та головний фактор ризику хронічних захворювань. Зниження функцій організму за старіння може спричинити втрату протеостазу (протеїнового гомеостазу), тобто здатності підтримувати баланс між синтезом, згортанням, модифікацією та деградацією протеїнів. Людям похилого віку необхідне достатнє споживання протеїнів для запобігання саркопенії, слабкості, переломів, остеопорозу, а також зниженої стійкості до інфекції. Однак збільшене споживання протеїнів може посилити ризик утворення окисленого протеїну, втрати протеостазу та виникнення дегенеративних розладів. З іншого боку, є дані про те, що обмежене споживання протеїнів може подовжити тривалість життя. Метою цього огляду було пояснити важливість визначення кількості та складу протеїнів для споживання людьми похилого віку. Обговорено розвиток оксидативного стресу в клітинах, що старіють, молекулярні механізми втрати протеостазу та шляхи його запобігання через обмеження споживання протеїнів.
Ключові слова: mTOR, оксидативний стрес, протеїнова дієта, протеостаз, старіння
Посилання:
- United Nations, Department of Economic and Social Affairs. World populations prospects: The 2017 revision, Ky Findings, an Advance Tables. New York: United Nations. ESA/P/WP/248.P.1-10.
- Mc Auley MT, Guimera AM, Hodgson D, Mcdonald N , Mooney KM, Morgan AE, Proctor CJ. Modelling the molecular mechanisms of aging. Biosci Rep. 2017;37(1):BSR20160177. PubMed, PubMedCentral, CrossRef
- Kirkwood TBL. Understanding the odd science of aging. Cell. 2005;120(4):437-447. PubMed, CrossRef
- Kirkwood TBL, Boys RJ, Gillespie CS, Proctor CJ, Shanley DP, Wilkinson DJ. Towards an e-biology of ageing: integrating theory and data. Nat Rev Mol Cell Biol. 2003;4(3):243-249. PubMed, CrossRef
- Rattan SIS. Theories of biological aging: genes, proteins, and free radicals. Free Radic Res. 2006;40(12):1230-1238. PubMed, CrossRef
- Sergiev PV, Dontsova OA, Berezkin GV. Theories of aging: an ever-evolving field. Acta Naturae. 2015;7(1):9-18. PubMed, PubMedCentral, CrossRef
- Jin K. Modern Biological Theories of Aging. Aging Dis. 2010;1(2):72-74. PubMed, PubMedCentral
- Grune T, Jung T, Merker K, Davies KJA. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol. 2004;36(12):2519-2530. PubMed, CrossRef
- Suji G, Sivakami S. Glucose, glycation and aging. Biogerontology. 2004;5(6):365-373. PubMed, CrossRef
- Harman D. The free radical theory of aging. Antioxid Redox Signal. 2003;5(5):557-561. PubMed, CrossRef
- Wang Z, Wang Y, Liu H, Che Y, Xu Y, Lingling E. Age-related variations of protein carbonyls in human saliva and plasma: is saliva protein carbonyls an alternative biomarker of aging? Age (Dordr). 2015;37(3):9781. PubMed, PubMedCentral, CrossRef
- Gubandru M, Margina D, Tsitsimpikou C, Goutzourelas N, Tsarouhas K, Ilie M, Tsatsakis AM, Kouretas D. Alzheimer’s disease treated patients showed different patterns for oxidative stress and inflammation markers. Food Chem Toxicol. 2013;61:209-214. PubMed, CrossRef
- Mannello F, Ligi D, Canale M. Aluminium, carbonyls and cytokines in human nipple aspirate fluids: Possible relationship between inflammation, oxidative stress and breast cancer microenvironment. J Inorg Biochem. 2013;128:250-256. PubMed, CrossRef
- Sefi M, Fetoui H, Makni M, Zeghal N. Mitigating effects of antioxidant properties of Artemisia campestris leaf extract on hyperlipidemia, advanced glycation end products and oxidative stress in alloxan-induced diabetic rats. Food Chem Toxicol. 2010;48(7):1986-1993. PubMed, CrossRef
- Pandey KB, Mehdi MM, Maurya PK, Rizvi SI. Plasma protein oxidation and its correlation with antioxidant potential during human aging. Dis Markers. 2010;29(1):31-36. PubMed, PubMedCentral, CrossRef
- Baum JI, Kim IY, Wolfe RR. Protein Consumption and the Elderly: What Is the Optimal Level of Intake? Nutrients. 2016;8(6):359. PubMed, PubMedCentral, CrossRef
- Wolfe RR. The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br J Nutr. 2012;108(Suppl 2):S88-S93. PubMed, CrossRef
- Morais JA, Chevalier S, Gougeon R. Protein turnover and requirements in the healthy and frail elderly. J Nutr Health Aging. 2006;10(4):272-283. PubMed
- Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, Phillips S, Sieber C, Stehle P, Teta D, Visvanathan R, Volpi E, Boirie Y. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc. 2013;14(8):542-559. PubMed, CrossRef
- Baum JI, Wolfe RR. The Link between Dietary Protein Intake, Skeletal Muscle Function and Health in Older Adults. Healthcare (Basel). 2015;3(3):529-543. PubMed, PubMedCentral, CrossRef
- Lamming DW, Cummings NE, Rastelli AL, Gao F, Cava E, Bertozzi B, Spelta F, Pili R, Fontana L. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model. Oncotarget. 2015;6(31):31233-31240. PubMed, PubMedCentral, CrossRef
- Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct. 2012;2012:646354. PubMed, PubMedCentral, CrossRef
- Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, Moskalev AA, Snezhkina AV. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 2016;7(29):44879-44905. PubMed, PubMedCentral, CrossRef
- Brunk UT, Terman A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem. 2002;269(8):1996-2002. PubMed, CrossRef
- Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981-990. PubMed, PubMedCentral, CrossRef
- Reeg S, Grune T. Protein Oxidation in Aging: Does It Play a Role in Aging Progression? Antioxid Redox Signal. 2015;23(3):239-255. PubMed, PubMedCentral, CrossRef
- Fernando R, Drescher C, Nowotny K, Grune T, Castro JP. Impaired proteostasis during skeletal muscle aging. Free Radic Biol Med. 2019;132:58-66. PubMed, CrossRef
- Nowson C, O’Connell S. Protein Requirements and Recommendations for Older People: A Review. Nutrients. 2015;7(8):6874-6899. PubMed, PubMedCentral, CrossRef
- Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MA. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr. 2002;76(2):473-481. PubMed, CrossRef
- Montero-Fernández N, Serra-Rexach JA. Role of exercise on sarcopenia in the elderly. Eur J Phys Rehabil Med. 2013;49(1):131-143. PubMed
- Short KR, Nair KS. The effect of age on protein metabolism. Curr Opin Clin Nutr Metab Care. 2000;3(1):39-44. PubMed, CrossRef
- Strandberg TE, Pitkälä KH. Frailty in elderly people. Lancet. 2007;369(9570):1328-1329. PubMed, CrossRef
- Ozaki A, Uchiyama M, Tagaya H, Ohida T, Ogihara R. The Japanese Centenarian Study: autonomy was associated with health practices as well as physical status. J Am Geriatr Soc. 2007;55(1):95-101. PubMed, CrossRef
- Anthony JC, Yoshizaw F, Anthon TG, Vary TC, Jefferson LS, Kimball SR. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr. 2000;130(10):2413-2419. PubMed, CrossRef
- Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab. 2006;291(2):E381-E387. PubMed, CrossRef
- Dangin M, Boirie Y, Guillet C, Beaufrère B. Influence of the protein digestion rate on protein turnover in young and elderly subjects. J Nutr. 2002;132(10):3228S-3233S. PubMed, CrossRef
- Dangin M, Guillet C, Garcia-Rodenas C, Gachon P, Bouteloup-Demange C, Reiffers-Magnani K, Fauquant J, Ballèvre O, Beaufrère B. The rate of protein digestion affects protein gain differently during aging in humans. J Physiol. 2003;549(Pt 2):635-644. PubMed, PubMedCentral, CrossRef
- Karelis AD, Messier V, Suppère C, Briand P, Rabasa-Lhoret R. Effect of cysteine-rich whey protein (immunocal®) supplementation in combination with resistance training on muscle strength and lean body mass in non-frail elderly subjects: a randomized, double-blind controlled study. J Nutr Health Aging. 2015;19(5):531-536. PubMed, CrossRef
- Grassi M, Petraccia L, Mennuni G, Fontana M, Scarno A, Sabetta S, Fraioli A. Changes, functional disorders, and diseases in the gastrointestinal tract of elderly. Nutr Hosp. 2011;26(4):659-668. PubMed
- Wall BT, Hamer HM, de Lange A, Kiskini A, Groen BB, Senden JM, Gijsen AP, Verdijk LB, van Loon LJ. Leucine co-ingestion improves post-prandial muscle protein accretion in elderly men. Clin Nutr. 2013;32(3):412-419. PubMed, CrossRef
- Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454-1464. PubMed, CrossRef
- Campbell WW, Crim MC, Dallal GE, Young VR, Evans WJ. Increased protein requirements in elderly people: new data and retrospective reassessments. Am J Clin Nutr. 1994;60(4):501-509. PubMed, CrossRef
- Campbell WW, Trappe TA, Wolfe RR, Evans WJ. The recommended dietary allowance for protein may not be adequate for older people to maintain skeletal muscle. J Gerontol A Biol Sci Med Sci. 2001;56(6):M373-M380. PubMed, CrossRef
- Courtney-Martin G, Ball RO, Pencharz PB, Elango R. Protein Requirements during Aging. Nutrients. 2016;8(8):492. PubMed, PubMedCentral, CrossRef
- Deutz NEP, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, Cederholm T, Cruz-Jentoft A, Krznariç Z, Nair KS, Singer P, Teta D, Tipton K, Calder PC. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33(6):929-936. PubMed, PubMedCentral, CrossRef
- Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435-464. PubMed, PubMedCentral, CrossRef
- Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol. 2018;217(1):51-63. PubMed, PubMedCentral, CrossRef
- Santra M, Dill KA, de Graff AMR. Proteostasis collapse is a driver of cell aging and death. Proc Natl Acad Sci USA. 2019;116(44):22173-22178. PubMed, PubMedCentral, CrossRef
- Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res Rev. 2011;10(2):205-215. PubMed, PubMedCentral, CrossRef
- Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22(2):124-131. PubMed, PubMedCentral, CrossRef
- Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 2009;78:477-513. PubMed, PubMedCentral, CrossRef
- Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell. 2006;125(3):443-451. PubMed, CrossRef
- Proctor CJ, Soti C, Boys RJ, Gillespi CS, Shanley DP, Wilkinso DJ, Kirkwood TB. Modelling the actions of chaperones and their role in ageing. Mech Ageing Dev. 2005;126(1):119-131. PubMed, CrossRef
- Proctor CJ , Lorimer IA. Modelling the role of the Hsp70/Hsp90 system in the maintenance of protein homeostasis. PLoS One. 2011;6(7):e22038. PubMed, PubMedCentral, CrossRef
- Friguet B, Bulteau AL, Chondrogianni N, Conconi M, Petropoulos I. Protein degradation by the proteasome and its implications in aging. Ann N Y Acad Sci. 2000;908:143-154. PubMed, CrossRef
- Bulteau AL, Petropoulos I, Friguet B. Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol. 2000;35(6-7):767-777. PubMed, CrossRef
- Terman A, Brunk UT. Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal. 2006;8(1-2):197-204. PubMed, CrossRef
- Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, Candia J, Zhang P, Cheung F, Fantoni G, CHI consortium, Semba RD, Luigi Ferrucci L. Plasma proteomic signature of age in healthy humans. Aging Cell. 2018;17(5):e12799. PubMed, PubMedCentral, CrossRef
- Fujita Y, Taniguchi Y, Shinkai S, Tanaka M, Ito M. Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatr Gerontol Int. 2016;16(Suppl 1):17-29. PubMed, CrossRef
- Chung HK, Ryu D, Kim KS, Chang JY, Kim YK, Yi HS, Kang SG, Choi MJ, Lee SE, Jung SB, Ryu MJ, Kim SJ, Kweon GR, Kim H, Hwang JH, Lee CH, Lee SJ, Wall CE, Downes M, Evans RM , Auwerx J, Shong M. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol. 2017;216(1):149-165. PubMed, PubMedCentral, CrossRef
- Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA. 1991;88(23):10540-10543. PubMed, PubMedCentral, CrossRef
- Basisty N, Meyer JG, Schilling B. Protein Turnover in Aging and Longevity. Proteomics. 2018;18(5-6):e1700108. PubMed, PubMedCentral, CrossRef
- Yang L, Licastro D, Cava E, Veronese N, Spelta F, Rizza W, Bertozzi B, Villareal DT, Hotamisligil GS, Holloszy JO, Fontana L. Long-Term Calorie Restriction Enhances Cellular Quality-Control Processes in Human Skeletal Muscle. Cell Rep. 2016;14(3):422-428. PubMed, CrossRef
- Weichhart T. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. Gerontology. 2018;64(2):127-134. PubMed, PubMedCentral, CrossRef
- Soultoukis GA, Partridge L. Dietary Protein, Metabolism, and Aging. Annu Rev Biochem. 2016;85:5-34. PubMed, CrossRef
- Arbor S. Where and how in the mTOR pathway inhibitors fight ageing: Rapamycin, resveratrol, and metformin. from: Resveratrol – adding life to years, not adding years to life. Intech Open. 2019:93-101. CrossRef
- Xie QB, Liang Y, Yang M, Yang Y, Cen XM, Yin G. DEPTOR-mTOR Signaling Is Critical for Lipid Metabolism and Inflammation Homeostasis of Lymphocytes in Human PBMC Culture. J Immunol Res. 2017;2017:5252840. PubMed, PubMedCentral, CrossRef
- Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell. 2015;161(1):106-118. PubMed, PubMedCentral, CrossRef
- Edwards C, Canfield J, Copes N, Brito A, Rehan M, Lipps D, Brunquell J, Westerheide SD, Bradshaw PC. Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genet. 2015;16(1):8. PubMed, PubMedCentral, CrossRef
- Santos J, Leão C, Sousa MJ. Growth culture conditions and nutrient signaling modulating yeast chronological longevity. Oxid Med Cell Longev. 2012;2012:680304. PubMed, PubMedCentral, CrossRef
- Kołodziej U, Maciejczyk M, Niklińska W, Waszkiel D, Żendzian-Piotrowska M, Żukowski P, Zalewska A. Chronic high-protein diet induces oxidative stress and alters the salivary gland function in rats. Arch Oral Biol. 2017;84:6-12. PubMed, CrossRef
- Ayala V, Naudí A, Sanz A, Caro P, Portero-Otin M, Barja G, Pamplona R. Dietary protein restriction decreases oxidative protein damage, peroxidizability index, and mitochondrial complex I content in rat liver. J Gerontol A Biol Sci Med Sci. 2007;62(4):352-360. PubMed, CrossRef
