Ukr.Biochem.J. 2021; Том 93, № 1, січень-лютий, c. 40-50

doi: https://doi.org/10.15407/ubj93.01.040

Стромально-васкулярна фракція жирової тканини як альтернативне джерело клітинного матеріалу для регенеративної медицини

А. С. Султанова, О. Я. Беспалова, О. Ю. Галкін

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»;
e-mail: tmb@kpi.ua

Отримано: 06 серпня 2020; Затверджено: 17 грудня 2020

Жирова тканина є найзручнішим джерелом клітинного матеріалу для регенеративної медицини, оскільки вона може бути отримана в значній кількості  шляхом косметичної ліпосакції, ліпоаспірації або шляхом ексцизії жирових відкладень. До складу жирової тканини входять адипоцити, а також клітини, що є складовими гетерогенної стромально-васкулярної фракції (stromal-vascular fraction, SVF), з якої можна виділити різні популяції клітин. Серед  них найважливішою для регенеративної медицини є популяція стовбурових клітин адипозної тканини (adipose-derived stem cells, ADSC). SVF можна відносно легко отримати із жирової тканини (ця тканина є альтернативою кістковому мозку як джерело стовбурових клітин) і використати для лікування різних патологій. Результати досліджень показали, що SVF не тільки має схожий до ADSC терапевтичний ефект, але в деяких випадках є навіть ефективнішим. В огляді розглянуто основні методи одержання та клітинний склад SVF, потенціал застосування в клінічній медицині, основні переваги перед іншими джерелами клітинного матеріалу для регенеративної медицини, зокрема, перед ADSC, що культивуються in vitro.

Ключові слова: , , , ,


Посилання:

  1. Ramakrishnan VM, Boyd NL. The Adipose Stromal Vascular Fraction as a Complex Cellular Source for Tissue Engineering Applications. Tissue Eng Part B Rev. 2018;24(4):289-299. PubMed, PubMedCentral, CrossRef
  2. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228. PubMed, CrossRef
  3. Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. 2017;8(1):145. PubMed, PubMedCentral, CrossRef
  4. Ciervo Y, Ning K, Jun X, Shaw PJ, Mead RJ. Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis. Mol Neurodegener. 2017;12(1):85. PubMed, PubMedCentral, CrossRef
  5. Veremeev AV, Bolgarin PN, Petkova MA, Katz N, Nesterenko VG. Stromal-vascular adipose tissue fraction as an alternative source of cellular material for regenerative medicine. Genes Cells. 2016;11(1):35-42.
  6. Zhu M, Heydarkhan-Hagvall S, Hedrick M, Benhaim P, Zuk P. Manual isolation of adipose-derived stem cells from human lipoaspirates. J Vis Exp. 2013;(79):e50585. PubMed, PubMedCentral, CrossRef
  7. Doi K, Tanaka S, Iida H, Eto H, Kato H, Aoi N, Kun S, Hirohi T, Yoshimura K. Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis. J Tissue Eng Regen Med. 2013;7(11):864-870. PubMed, CrossRef
  8. Tonnard P, Verpaele A, Peeters G, Hamdi M, Cornelissen M, Declercq H. Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg. 2013;132(4):1017-1026. PubMed, CrossRef
  9. Mizuno H, Tobita M, Uysal AC. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells. 2012;30(5):804-810.  PubMed, CrossRef
  10. Galkin A, Komar A, Gorshunov Yu, Besarab A, Soloviova V. New monoclonal antibodies to the prostate-specific antigen: obtaining and studying biological properties. J Microbiol Biotech Food Sci. 2019;9(3):573-577.  CrossRef
  11. Grigorieva SM, Starosyla DB, Rybalko SL, Motronenko VV, Lutsenko TM, Galkin OYu. Effect of recombinant human interleukin-7 on Pseudomonas aeruginosa wound infection. Ukr Biochem J. 2019;91(5):7-15.  CrossRef
  12. Nikolayenko IV, Galkin AYu, Rayevskaya GYe, Kas’ianenko TV, Tereshchenko MI, Donskaya YeS, Spivak NYa. Preparation of monoclonal antibodies to the Fc-fragment of human IgG and the use of their based immunoenzyme conjugates. Klin Lab Diagn. 2005;(11):8-11. (In Russian). PubMed
  13. Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA, Paydar KZ, Evans GR, Widgerow AD. Stromal vascular fraction: A regenerative reality? Part 1: Current concepts and review of the literature. J Plast Reconstr Aesthet Surg. 2016;69(2):170-179. PubMed, CrossRef
  14.  Motronenko V, Lutsenko T, Galkin A, Gorshunov Y, Solovjova V. Optimization of the culture medium composition to increase the biosynthesis of recombinant human interleukin-7 in Escherichia coli. J Microbiol Biotech Food Sci. 2020;9(4):761-768.  CrossRef
  15. Kølle SF, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, Kastrup J,  Kirchhof M, Rasmussen BS, Talman ML, Thomsen C, Dickmeiss E, Drzewiecki KT. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet. 2013;382(9898):1113-1120. PubMed, CrossRef
  16. Lutsenko TN, Kovalenko MV, Galkin OYu. Validation of biological activity testing procedure of recombinant human interleukin-7. Ukr Biochem J. 2017;89(1):82-89. PubMed, CrossRef
  17. MacDonald GI, Augello A, De Bari C. Role of mesenchymal stem cells in reestablishing immunologic tolerance in autoimmune rheumatic diseases. Arthritis Rheum. 2011;63(9):2547-2557. PubMed, CrossRef
  18. Rodriguez JP, Murphy MP, Hong S, Madrigal M, March KL, Minev B, Harman RJ, Chen CS, Timmons RB, Marleau AM, Riordan NH. Autologous stromal vascular fraction therapy for rheumatoid arthritis: rationale and clinical safety. Int Arch Med. 2012;5:5.  PubMed, PubMedCentral, CrossRef
  19. Carstens M, Montenegro JJ, Gomez A, Correa D. Adipose-derived stromal vascular fraction (SVF) cells in the treatment of rheumatoid arthritis of the hand. CellR4. 2018;6(3):e2533.
  20. Mohammadi R, Sanaei N, Ahsan S, Rostami H, Abbasipour-Dalivand S, Amini K. Repair of nerve defect with chitosan graft supplemented by uncultured characterized stromal vascular fraction in streptozotocin induced diabetic rats. Int J Surg. 2014;12(5):33-40. PubMed, CrossRef
  21. Semon JA, Zhang X, Pandey AC, Alandete SM, Maness C, Zhang S, Scruggs BA, Strong AL, Sharkey SA, Beuttler MM, Gimble JM, Bunnell BA. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis. Stem Cells Transl Med. 2013;2(10):789-796. PubMed, PubMedCentral, CrossRef
  22. Galkin OYu, Gorshunov YuV, Besarab OB, Ivanova OM. Development and characterization of highly informative ELISA for the detection of IgG and IgA antibodies to Сhlamydia trachomatis. Ukr Biochem J. 2018;90(3):70-83. CrossRef
  23. You HJ, Han SK. Cell therapy for wound healing. J Korean Med Sci. 2014;29(3):311-319. PubMed, PubMedCentral, CrossRef
  24. Sokol AA, Grekov DA, Yemets GI, Galkin AYu, Shchotkina NV, Dovghaliuk AA, Telehuzova OV, Rudenko NM, Romaniuk OM, Yemets IM. Comparison of bovine pericardium decellularization protocols for production of biomaterial for cardiac surgery. Biopolym Cell. 2020;36(5):392-403. CrossRef
  25. Lv SS, Liu G, Wang JP, Wang WW, Cheng J, Sun AL, Liu HY, Nie HB, Su MR, Guan GJ. Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting macrophage infiltration. Int Immunopharmacol. 2013;17(2):275-282. PubMed, CrossRef
  26. Rigotti G, Marchi A, Galiè M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007;119(5):1409-1422.  PubMed, CrossRef
  27. Dalal J, Gandy K, Domen J. Role of mesenchymal stem cell therapy in Crohn’s disease. Pediatr Res. 2012;71(4 Pt 2):445-451. PubMed, CrossRef
  28. Sándor GK, Tuovinen VJ, Wolff J, Patrikoski M, Jokinen J, Nieminen E, Mannerström B, Lappalainen OP, Seppänen R, Miettinen S. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg. 2013;71(5):938-950.  PubMedCrossRef
  29. Jurgens WJ, Kroeze RJ, Zandieh-Doulabi B, van Dijk A, Renders GA, Smi TH, van Milligen FJ, Ritt MJ, Helder MN. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. Biores Open Access. 2013;2(4):315-325. PubMed, PubMedCentral, CrossRef
  30. Golembiovska O.I., Galkin A.Yu., Besarab A.B. Development and validation of a dissolution test for ursodeoxycholic acid and taurine from combined formulation. Sci Study Res Chem Chem Eng Biotechnol Food Industry. 2019;20(3):377-394.
  31. Khalpey Z, Janardhanan R, Konhilas J, Hemphill C. First in man: adipose-derived stromal vascular fraction cells may promote restorative cardiac function. Am J Med. 2014;127(5):e11-e12. PubMed, PubMedCentral, CrossRef
  32. Madonna R, Geng YJ, De Caterina R. Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol. 2009;29(11):1723-1729. PubMed, CrossRef
  33. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101-109. PubMedCrossRef
  34. McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, Kloster A, Di Halvorsen Y, Ting JP, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24(5):1246-1253. PubMed, CrossRef
  35. Nikolaenko IV, Goncharenko VS, Shimko NN, Galkin AYu. Isolation of surface antigen of hepatites B virus.  Ukr Biokhim Zhurn. 2007;79(2):114-122. (In Russian). PubMed
  36. Prokopiuk VYu, Globa NS, Prokopiuk OS, Shchedrov AO, Musatova IB. Characterization of placental mesenchymal stem cells spheroids after generation, hypothermic and subnormothermic storage. Innov Biosyst Bioeng. 2019;3(3):146-151.  CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.