Ukr.Biochem.J. 2022; Том 94, № 1, січень-лютий, c. 86-94

doi: https://doi.org/10.15407/ubj94.01.086

Вміст протеїнів у дієті батьків впливає на стійкість до холоду та стан антиоксидантної системи у нащадків Drosophila

О. М. Стрільбицька1*, У. В. Семанюк1, Н. І. Бурдилюк1, О. В. Лущак1,2*

1Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна;
2Університет досліджень та розвитку, Івано-Франківськ, Україна;
*e-mail: olya_b08@ukr.net or oleh.lushchak@pnu.edu.ua

Отримано: 02 лютого 2021; Затверджено: 21 січня 2022

Поживні речовини у складі харчового раціону впливають на тривалість життя та здоров’я організму. Вміст компонентів дієти батьків може епігенетично позначатися на фізіологічному стані нащадків. Ми вивчали, як вміст протеїнів у харчовому раціоні батьків мух Drosophila melanogaster впливав на стійкість до холодового стресу та стан антиоксидантної системи у дорослих нащадків. Батьківське покоління дрозофіл утримували на дієтах із чотирма варіаціями кількості дріжджів у межах від 0,25 до 15% та сталим вмістом сахарози, а наступне покоління годували дієтою однакового складу. Показано, що мухи, які споживали дієту з обмеженим вмістом (0,25%) дріжджів, давали нащадків самців F1 із більшою стійкістю до холоду та вищою активністю ензимів другої лінії антиоксидантного захисту, тоді як у самок F1 не було виявлено впливу складу харчового раціону батьків на стійкість до холоду та активність каталази, GST, G6PDH, IDH та рівень тіолів. Одержані результати дозволяють припустити, що залежна від доступності поживних речовин зміна експресії генів у батьківському поколінні може по-різному впливати на стресову відповідь самців та самок першого покоління нащадків.

Ключові слова: , , , , ,


Посилання:

  1. Baker KD, Thummel CS. Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab. 2007;6(4):257-266. PubMed, PubMedCentral, CrossRef
  2. Lushchak OV, Rovenko BM, Gospodaryov DV, Lushchak VI. Drosophila melanogaster larvae fed by glucose and fructose demonstrate difference in oxidative stress markers and antioxidant enzymes of adult flies. Comp Biochem Physiol A Mol Integr Physiol. 2011;160(1):27-34. PubMed, CrossRef
  3. Lushchak OV, Gospodaryov DV, Rovenko BM, Glovyak AD, Yurkevych IS, Klyuba VP, Shcherbij MV, Lushchak VI. Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2012;67(2):118-125. PubMed, CrossRef
  4. Strilbytska O, Strutynska T, Semaniuk U, Burdyliyk N, Lushchak O. Dietary sucrose defines lifespan and metabolism in Drosophila. Ukr Biochem J. 2020;92(5):97-105. CrossRef
  5. Strilbytska O, Velianyk V, Burdyliuk N, Yurkevych IS, Vaiserman A, Storey KB, Pospisilik A, Lushchak O. Parental dietary protein-to-carbohydrate ratio affects offspring lifespan and metabolism in drosophila. Comp Biochem Physiol A Mol Integr Physiol. 2020;241:110622. PubMed, CrossRef
  6. Begon M, Ashburner M, Carson HL, Thompson JJN. The genetics and biology of Drosophila. Academic Press, London. 1982.
  7. Colinet H, Renault D. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol. 2014;170:6-14. PubMed,CrossRef
  8. Brookheart RT, Duncan JG. Modeling dietary influences on offspring metabolic programming in Drosophila melanogaster. Reproduction. 2016;152(3):R79-R90. PubMed, PubMedCentral, CrossRef
  9. Deas JB, Blondel L, Extavour CG. Ancestral and offspring nutrition interact to affect life-history traits in Drosophila melanogaster. Proc Biol Sci. 2019;286(1897):20182778. PubMed, PubMedCentral, CrossRef
  10. Matzkin LM, Johnson S, Paight C, Markow TA. Preadult parental diet affects offspring development and metabolism in Drosophila melanogaster. PLoS One. 2013;8(3):e59530. PubMed, PubMedCentral, CrossRef
  11. Wu LL, Russell DL, Wong SL, Chen M, Tsai TS, St John JC , Norman RJ, Febbraio MA, Carroll J, Robker RL.Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development. 2015;142(4):681-691.
    PubMed, CrossRef
  12. Vaiserman A, Lushchak O. Developmental origins of type 2 diabetes: Focus on epigenetics. Ageing Res Rev. 2019;55:100957. PubMed, CrossRef
  13. Perez MF, Lehner B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat Cell Biol. 2019;21(2):143-151. PubMed, CrossRef
  14. Panikar CS, Paingankar MS, Deshmukh S, Abhyankar V, Deobagkar DD. DNA methylation changes in a gene-specific manner in different developmental stages of Drosophila melanogaster. Curr Sci. 2017;112(6):1165-1175.
  15. Ciabrelli F, Comoglio F, Fellous S, Bonev B, Ninova M, Szabo Q, Xuéreb A, Klopp C, Aravin A, Paro R, Bantignies F, Cavalli G. Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nat Genet. 2017;49(6):876-886. PubMed, PubMedCentral, CrossRef
  16. Grentzinger T, Armenise C, Brun C, Mugat B, Serrano V, Pelisson A, Chambeyron S. piRNA-mediated transgenerational inheritance of an acquired trait. Genome Res. 2012;22(10):1877-1888. PubMed, PubMedCentral, CrossRef
  17. Linford NJ, Bilgir c, Ro J, Pletcher SD. Measurement of lifespan in Drosophila melanogaster. J Vis Exp. 2013;(71):50068. PubMed, PubMedCentral, CrossRef
  18. Gibert P, Huey RB. Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny. Physiol Biochem Zool. 2001;74(3):429-434. PubMed, CrossRef
  19. Lozinsky OV, Lushchak OV, Storey JM, Storey KB, Lushchak VI. Sodium nitroprusside toxicity in Drosophila melanogaster: delayed pupation, reduced adult emergence, and induced oxidative/nitrosative stress in eclosed flies. Arch Insect Biochem Physiol. 2012;80(3):166-185. PubMed, CrossRef
  20. Gospodaryov DV, Strilbytska OM, Semaniuk UV, Perkhulyn NV, Rovenko BM, Yurkevych IS, Barata AG, Dick TP, Lushchak OV, Jacobs HT. Alternative NADH dehydrogenase extends lifespan and increases resistance to xenobiotics in Drosophila. Biogerontology. 2020;21(2):155-171. PubMed, PubMedCentral, CrossRef
  21. Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014;224:164-175. PubMed, CrossRef
  22. Krittika S, Yadav P. Dietary protein restriction deciphers new relationships between lifespan, fecundity and activity levels in fruit flies Drosophila melanogaster. Sci Rep. 2020;10(1):10019. PubMed, PubMedCentral, CrossRef
  23. Lushchak O, Strilbytska OM, Yurkevych I, Vaiserman AM, Storey KB. Implications of amino acid sensing and dietary protein to the aging process. Exp Gerontol. 2019;115:69-78. PubMed, CrossRef
  24. Kitada M, Ogura Y, Monno I, Koya D. The impact of dietary protein intake on longevity and metabolic health. EBioMedicine. 2019;43:632-640. PubMed, PubMedCentral, CrossRef
  25. Sanz A, Caro P, Barja G. Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J Bioenerg Biomembr. 2004;36(6):545-552. PubMed, CrossRef
  26. Zhenyukh O, Civantos E, Ruiz-Ortega M, Sánchez MS, Vázquez C, Peiró C, Egido J, Mas S. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic Biol Med. 2017;104:165-177. PubMed, CrossRef
  27. MacMillan HA, Williams CM, Staples JF, Sinclair BJ. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proc Natl Acad Sci USA. 2012;109(50):20750-20755. PubMed, PubMedCentral, CrossRef
  28. Storey KB, Storey JM. Molecular biology of freezing tolerance. Compr Physiol. 2013;3(3):1283-1308. PubMed, CrossRef
  29. Tower J. Heat shock proteins and Drosophila aging. Exp Gerontol. 2011;46(5):355-362. PubMed, PubMedCentral, CrossRef
  30. Yang J, Tower J. Expression of hsp22 and hsp70 transgenes is partially predictive of drosophila survival under normal and stress conditions. J Gerontol A Biol Sci Med Sci. 2009;64(8):828-838. PubMed, PubMedCentral, CrossRef
  31. Rovenko BM, Lushchak VI, Lushchak OV. Carbohydrate restriction in the larval diet causes oxidative stress in adult insects of Drosophila melanogaster. Ukr Biokhim Zhurn. 2013;85(5):61-72. (In Ukrainian). PubMed, CrossRef
  32. Oboh G, Ogunsuyi OB, Ojelade MT, Akomolafe SF. Effect of dietary inclusions of bitter kola seed on geotactic behavior and oxidative stress markers in Drosophila melanogaster. Food Sci Nutr. 2018;6(8):2177-2187. PubMed, PubMedCentral, CrossRef
  33. Schwasinger-Schmidt TE, Kachman SD, Harshman LG. Evolution of starvation resistance in Drosophila melanogaster: measurement of direct and correlated responses to artificial selection. J Evol Biol. 2012;25(2):378-387. PubMed, PubMedCentral, CrossRef
  34. Öst A, Lempradl A , Casas E, Weigert M, Tiko T, Deniz M, Pantano L, Boenisch U, Itskov PM, Stoeckius M, Ruf M, Rajewsky N, Reuter G, Iovino N, Ribeiro C, Alenius M, Heyne S, Vavouri T, Pospisilik JA. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell. 2014;159(6):1352-1364. PubMed, CrossRef
  35. Dew-Budd K, Jarnigan J, Reed LK. Genetic and Sex-Specific Transgenerational Effects of a High Fat Diet in Drosophila melanogaster. PLoS One. 2016;11(8):e0160857. PubMed, PubMedCentral, CrossRef
  36. Rovenko BM, Kubrak OI, Gospodaryov DV, IS Perkhulyn IS, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J Insect Physiol. 2015;79:42-54. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.