Ukr.Biochem.J. 2022; Том 94, № 1, січень-лютий, c. 53-63
doi: https://doi.org/10.15407/ubj94.01.053
Дієта під час розвитку впливає на метаболічні показники личинок та дорослих мух Drosophila
О. М. Стрільбицька1*, У. В. Семанюк1, Н. І. Бурдилюк1, В. Бубало2, О. В. Лущак1,3*
1Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна;
2Лабораторія експериментальної токсикології та мутагенезу, Науковий центр превентивної токсикології, харчової та хімічної безпеки імені академіка Л. І. Медведя, МОЗ України, Київ;
3Університет досліджень та розвитку, Івано-Франківськ, Україна;
*e-mail: olya_b08@ukr.net or oleh.lushchak@pnu.edu.ua
Отримано: 04 жовтня 2021; Затверджено: 21 січня 2022
Залежність метаболізму та фізіологічного стану дорослого організму від харчування під час його розвитку стає гарячою темою сучасної еволюційної біології. Ми використали плодову мушку Drosophila melanogaster та живильне середовище з різним вмістом сахарози (S) і сухих дріжджів (Y): 0S:2Y, 20S:2Y або 0S:5Y, 20S:5Y, щоб показати, що умови харчування під час розвитку впливають на обмін речовин у личинок та імаго. Рівень глюкози, глікогену, тригліцеридів та загальних ліпідів в організмі личинок та дорослих мух вимірювали за допомогою діагностичних наборів. Виявлено затримку розвитку дрозофіл, які розвивалися на дієтах із низьким вмістом дріжджів або з високим вмістом сахарози. Показано, що утримання личинок на харчовому раціоні з високим вмістом сахарози спричиняло зниження маси та збільшення енергетичних запасів (кількості ліпідів) у личинок та дорослих мух. Обмеження вмісту сухих дріжджів у дієті личинок призводило до зниження накопичення глікогену та рівня протеїнів у личинок та дорослих мух. Виявлені особливості метаболізму дорослих мух є результатом харчування під час розвитку і можуть бути пов’язані з механізмами адаптації організму до умов живлення.
Ключові слова: глікоген, глюкоза, дієта, метаболічні показники, плодова мушка, розвиток, тригліцериди, харчування
Посилання:
- Zhou LY, Deng MQ, Zhang Q, Xiao XH. Early-life nutrition and metabolic disorders in later life: a new perspective on energy metabolism. Chin Med J (Engl). 2020;133(16):1961-1970. PubMed, PubMedCentral, CrossRef
- Vickers MH, Sloboda DM. Strategies for reversing the effects of metabolic disorders induced as a consequence of developmental programming. Front Physiol. 2012;3:242. PubMed, PubMedCentral, CrossRef
- Bloomington Drosophila Stock Center. Indiana University Bloomington. https://bdsc.indiana.edu/information/recipes/index.html. Accessed 11 Dec 2018.
- Staats S, Lüersen K, Wagner AE, Rimbach G. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. J Agric Food Chem. 2018;66(15):3737-3753. PubMed, CrossRef
- Tu MP, Tatar M. Juvenile diet restriction and the aging and reproduction of adult Drosophila melanogaster. Aging Cell. 2003;2(6):327-333. PubMed, CrossRef
- Ikeya T, Galic M, Belawat P, Nairz K, Hafen E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol. 2002;12(15):1293-1300. PubMed, CrossRef
- Lushchak OV, Rovenko BM, Gospodaryov DV, Lushchak VI. Drosophila melanogaster larvae fed by glucose and fructose demonstrate difference in oxidative stress markers and antioxidant enzymes of adult flies. Comp Biochem Physiol A Mol Integr Physiol. 2011;160(1):27-34. PubMed, CrossRef
- Rovenko BM, Lushchak VI, Lushchak OV. Carbohydrate restriction in the larval diet causes oxidative stress in adult insects of Drosophila melanogaster. Ukr Biokhim Zhurn. 2013;85(5):61-72. (In Ukrainian). PubMed, PubMedCentral, CrossRef
- Rovenko BM, Kubrak OI, Gospodaryov DV , Yurkevych IS, Sanz A , Lushchak OV, Lushchak VI. Restriction of glucose and fructose causes mild oxidative stress independently of mitochondrial activity and reactive oxygen species in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol. 2015;187:27-39. PubMed, CrossRef
- Rovenko BM, Kubrak OI, Gospodaryov DV , Perkhulyn NV, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J Insect Physiol. 2015;79:42-54. PubMed, CrossRef
- Ormerod KG, LePine OK, Abbineni PS, Bridgeman JM, Coorssen JR, Mercier AJ, Tattersall GJ. Drosophila development, physiology, behavior, and lifespan are influenced by altered dietary composition. Fly (Austin). 2017;11(3):153-170. PubMed, PubMedCentral, CrossRef
- Shingleton AW, Masandika JR, Thorsen LS, Zhu Y, Mirth CK. The sex-specific effects of diet quality versus quantity on morphology in Drosophila melanogaster. R Soc Open Sci. 2017;4(9):170375. PubMed, PubMedCentral, CrossRef
- Rovenko BM, Perkhulyn NV, Lushchak OV, Storey JM, Storey KB, Lushchak VI. Molybdate partly mimics insulin-promoted metabolic effects in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol. 2014;165:76-82. PubMed, CrossRef
- Linford NJ, Bilgir C, Ro J, Pletcher SD. Measurement of lifespan in Drosophila melanogaster. J Vis Exp. 2013;(71):50068. PubMed, PubMedCentral, CrossRef
- Rovenko BM, Perkhulyn NV, Gospodaryov DV, Sanz A, Lushchak OV, Lushchak VI. High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol. 2015;180:75-85. PubMed, CrossRef
- Kubrak OI, Lushchak OV, Zandawala M, Nässel DR. Systemic corazonin signalling modulates stress responses and metabolism in Drosophila. Open Biol. 2016;6(11):160152. PubMed, PubMedCentral, CrossRef
- Wawrik B, Harriman BH. Rapid, colorimetric quantification of lipid from algal cultures. J Microbiol Methods. 2010;80(3):262-266. PubMed, CrossRef
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. PubMed, CrossRef
- Skorupa DA, Dervisefendic A, Zwiener J, Pletcher SD. Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell. 2008;7(4):478-490. PubMed, PubMedCentral, CrossRef
- Lushchak O, Strilbytska OM, Yurkevych I, Vaiserman AM, Storey KB. Implications of amino acid sensing and dietary protein to the aging process. Exp Gerontol. 2019;115:69-78. PubMed, CrossRef
- Flatt JP. Energy metabolism and the control of lipogenesis in adipose tissue. Horm Metab Res. 1970;2:Suppl 2:93-101. PubMed
- Lushchak OV, Gospodaryov DV, Rovenko BM, Glovyak AD, Yurkevych IS, Klyuba VP, Shcherbij MV, Lushchak VI. Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2012;67(2):118-125. PubMed, CrossRef
- Davies LR, Schou MF, Kristensen TN, Loeschcke V. Linking developmental diet to adult foraging choice in Drosophila melanogaster. J Exp Biol. 2018;221(Pt 9):jeb175554. PubMed, CrossRef
- Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan RL, Baranski TJ. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech. 2011;4(6):842-849. PubMed, PubMedCentral, CrossRef
- Krittika S, Lenka A, Yadav P. Evidence of dietary protein restriction regulating pupation height, development time and lifespan in Drosophila melanogaster. Biol Open. 2019;8(6):bio042952. PubMed, PubMedCentral, CrossRef
- Bruce KD, Hoxha S, Carvalho GB, Yamada R, Wang HD, Karayan P, He S, Brummel T, P Kapahi, Ja WW. High carbohydrate-low protein consumption maximizes Drosophila lifespan. Exp Gerontol. 2013;48(10):1129-1135. PubMed, PubMedCentral, CrossRef
- Lee KP, Simpson SJ, Clissold FJ, Brooks R, Ballard JW, Taylor PW, Soran N, Raubenheimer D. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc Natl Acad Sci USA. 2008;105(7):2498-2503. PubMed, PubMedCentral, CrossRef
- Solon-Biet SM, McMahon AC, Ballard JW, Ruohonen K, Wu LE, Cogger VC, Warren A, Huang X, Pichaud N, Melvin RG, Gokarn R, Khalil M, Turner N, Cooney GJ, Sinclair DA, Raubenheimer D, Le Couteur DG, Simpson SJ. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418-430. PubMed, PubMedCentral, CrossRef
- Flatt T, Tu MP, Tatar M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays. 2005;27(10):999-1010. PubMed, CrossRef
- Mirth CK, Riddiford LM. Size assessment and growth control: how adult size is determined in insects. Bioessays. 2007;29(4):344-355. PubMed, CrossRef
- Orme MH, Leevers SJ. Flies on steroids: the interplay between ecdysone and insulin signaling. Cell Metab. 2005;2(5):277-278. PubMed, CrossRef
- Pérez-Hedo M, Rivera-Perez C, Noriega FG. The insulin/TOR signal transduction pathway is involved in the nutritional regulation of juvenile hormone synthesis in Aedes aegypti. Insect Biochem Mol Biol. 2013;43(6):495-500. PubMed, PubMedCentral, CrossRef
- Graham P, Pick L. Drosophila as a model for diabetes and Ddiseases of insulin resistance. Curr Top Dev Biol. 2017;121:397-419. PubMed, PubMedCentral, CrossRef
- Mattila J, Hietakangas V. Regulation of Carbohydrate Energy Metabolism in Drosophila melanogaster. Genetics. 2017;207(4):1231-1253. PubMed, PubMedCentral, CrossRef
- Garrido D, Rubin T, Poidevin M, Maroni B, Le Rouzic A, Parvy JP, Montagne J. Fatty acid synthase cooperates with glyoxalase 1 to protect against sugar toxicity. PLoS Genet. 2015;11(2):e1004995. PubMed, PubMedCentral, CrossRef
- Bai Y, Li K, Shao J, Luo Q, Jin LH. Flos Chrysanthemi Indici extract improves a high-sucrose diet-induced metabolic disorder in Drosophila. Exp Ther Med. 2018;16(3):2564-2572. PubMed, PubMedCentral, CrossRef
- Warbrick-Smith J, Behmer ST, Lee KP, Raubenheimer D, Simpson SJ. Evolving resistance to obesity in an insect. Proc Natl Acad Sci USA. 2006;103(38):14045-14049. PubMed, PubMedCentral, CrossRef
- Heier C, Klishch S, Stilbytska O, Semaniuk U, Lushchak O. The Drosophila model to interrogate triacylglycerol biology. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(6):158924. PubMed, CrossRef
- Rehman N, Varghese J. Larval nutrition influences adult fat stores and starvation resistance in Drosophila. PLoS One. 2021;16(2):e0247175. PubMed, PubMedCentral, CrossRef
- Musselman LP, Fink JL, Baranski TJ. Similar effects of high-fructose and high-glucose feeding in a Drosophila model of obesity and diabetes. PLoS One. 2019;14(5):e0217096. PubMed, PubMedCentral, CrossRef
- Monaghan P. Early growth conditions, phenotypic development and environmental change. Philos Trans R Soc Lond B Biol Sci. 2008;363(1497):1635-1645. PubMed, PubMedCentral, CrossRef
- Semaniuk U, Piskovatska V, Strilbytska O, Strutynska T, Burdyliuk N, Vaiserman A, Bubalo V, Storey KB, Lushchak O. Drosophila insulin-like peptides: from expression to functions – a review. Entomol Exp Applic. 2021;169(2):195-208. CrossRef
- Semaniuk U, Strilbytska O, Malinovska K, Storey KB, Vaiserman A, Lushchak V, Lushchak O. Factors that regulate expression patterns of insulin-like peptides and their association with physiological and metabolic traits in Drosophila. Insect Biochem Mol Biol. 2021;135:103609. PubMed
- Broughton SJ , Piper MDW, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, Partridge L. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci USA. 2005;102(8):3105-3110. PubMed, PubMedCentral, CrossRef
