Ukr.Biochem.J. 2022; Том 94, № 3, травень-червень, c. 5-15

doi: https://doi.org/10.15407/ubj94.03.005

Вплив вітаміну D(3) на ремоделювання кісткової тканини за різних видів експериментальної патології

A. O. Мазанова*, O. O. Макарова, A. В. Хоменко, В. M. Василевська,
O. Ю. Лотоцька, I. O. Шиманський, M. M. Великий

Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
*e-mail: ann.mazanova@gmail.com

Отримано: 17 червня 2022; Виправлено: 28 липня 2022;
Затверджено: 29 вересня 2022; Доступно онлайн: 06 жовтня 2022

Остеопороз — це прогресуюче системне захворювання скелету, що характеризується зниженням щільності кісткової тканини, порушенням її мікроархітектоніки та підвищеним ризиком переломів, які виникають під час мінімального механічного навантаження або без нього. Однією з основних причин розвитку остеопорозу є дефіцит вітаміну D, який призводить до порушення нормального ремоделювання кісткової тканини. Метою дослідження було проаналізувати особливості процесу ремоделювання кісткової тканини шляхом визначення ключових біохімічних маркерів кісткоутво­рення/резорбції за первинного та вторинного остеопорозу, а також дослідити потенційний корегувальний ефект вітаміну D3. Експерименти проводили на щурах з різними моделями остеопорозу: аліментарний, дисфункційний та вторинний остеопороз, індукований цукровим діабетом. Для вимірювання вмісту 25(OH)D у сироватці крові щурів використовували імуноензимний аналіз. Вміст кальцію та активність лужної фосфатази у сироватці крові і кістковій тканині визначали за допомогою комерційних наборів. Вміст неорганічного фосфату в сироватці крові та золі кісток визначали за методом Дайса. Показано, що всі досліджувані патологічні стани супроводжувалися дефіцитом вітаміну D, що призводило до порушення всмоктування кальцію в кишечнику та реабсорбції неорганічних фосфатів нирками, та зниження їх концентрації в сироватці крові. Гіпокальціємія та гіпофосфатемія спричинювала порушення нормального ремоделювання кісткової тканини, надмірну активацю лужної фосфатази та зниження вмісту кальцію і фосфатів у кістковій тканині. Таким чином, підтверджено, що нормальна біодоступність вітаміну D є критичною для ефективного ремоделювання кісткової тканині як за первинного, так і за вторинного остеопорозу.

Ключові слова: , , ,


Посилання:

  1. WCO-IOF-ESCEO World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Osteoporos Int. 2020;31(Suppl 1):1-32. PubMed, CrossRef
  2. Dobbs MB, Buckwalter J, Saltzman C. Osteoporosis: the increasing role of the orthopaedist. Iowa Orthop J. 1999;19:43-52. PubMed, PubMedCentral
  3. Stein E, Shane E. Secondary osteoporosis. Endocrinol Metab Clin North Am. 2003;32(1):115-134. PubMed, CrossRef
  4. Ala M, Jafari RM, Dehpour AR. Diabetes Mellitus and Osteoporosis Correlation: Challenges and Hopes. Curr Diabetes Rev. 2020;16(9):984-1001. PubMed, CrossRef
  5. Labudzynskyi DO, Shymanskyi ІО, Lisakovska OO, Veliky ММ. Osteoprotective effects of vitamin D(3) in diabetic mice is VDR-mediated and regulated via RANKL/RANK/OPG axis. Ukr Biochem J. 2018;90(2):56-65. CrossRef
  6. Malik AA, Baig M, Butt NS, Imran M, Alzahrani SH, Gazzaz ZJ. Bibliometric Analysis of Global Research Productivity on Vitamin D and Bone Metabolism (2001-2020): Learn from the Past to Plan Future. Nutrients. 2022;14(3):542.
    PubMed, PubMedCentral, CrossRef
  7. Carlberg C. Vitamin D: A Micronutrient Regulating Genes. Curr Pharm Des. 2019;25(15):1740-1746. PubMed, CrossRef
  8. Goltzman D. Functions of vitamin D in bone. Histochem Cell Biol. 2018;149(4):305-312. PubMed, CrossRef
  9. Amrein K, Scherkl M, Hoffmann M, Neuwersch-Sommeregger S, Köstenberger M, Tmava Berisha A, Martucci G, Pilz S, Malle O. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr. 2020;74(11):1498-1513.PubMed, PubMedCentral, CrossRef
  10. Povorozniuk VV, Balatska NI. Vitamin D deficiency in the population of ukraine and risk factors of its development. Pain Joints Spine. 2012;4(8):5-11. (In Ukrainian). CrossRef
  11. Berridge MJ. Vitamin D deficiency accelerates ageing and age-related diseases: a novel hypothesis. J Physiol. 2017;595(22):6825-6836. PubMed, PubMedCentral, CrossRef
  12. Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 2006;194(2 Suppl):S3-11. PubMed, CrossRef
  13. Zaitseva OV, Shandrenko SG, Veliky MM. Biochemical markers of bone collagen type I metabolism. Ukr Biochem J. 2015;87(1):21-32. PubMed, CrossRef
  14. Riasniy VM, Apukhovska LI, Veliky NN, Shymanskyy IO, Labudzynskyi DO, Komisarenko SV. Immunomodulatory effects of vitamin D(3) and bisphosphonates in nutritional osteoporosis in rats. Ukr Biokhim Zhurn. 2012;84(2):73-80. (In Ukrainian). PubMed
  15. Mazanova AO, Shymanskyy IO, Veliky MM. Development and validation of immunoenzyme test-system for determination of 25-hydroxyvitamin D in blood serum. Biotechnol. Acta. 2016;9(2):28-36. CrossRef
  16. Dyce BJ, Bessman SP. A rapid nonenzymatic assay for 2,3-DPG in multiple specimens of blood. Arch Environ Health. 1973;27(2):112-115. PubMed, CrossRef
  17. Komisarenko SV, Apukhovska LI, Riasniy VM, Kalashnikov AV, Veliky NN. “Mebivid” biopharmaceutical preparation efficacy against vitamin D3 and calcium metabolism disorders in alimentary osteoporosis. Biotechnol Acta. 2011;4(1):74-81.
  18. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18(2):153-165. PubMed, CrossRef
  19. Pfotenhauer KM, Shubrook JH. Vitamin D Deficiency, Its Role in Health and Disease, and Current Supplementation Recommendations. J Am Osteopath Assoc. 2017;117(5):301-305. PubMed, CrossRef
  20. Zmijewski MA. Vitamin D and Human Health. Int J Mol Sci. 2019;20(1):145. PubMed, PubMedCentral, CrossRef
  21. Katz J, Yue S, Xue W. Increased risk for COVID-19 in patients with vitamin D deficiency. Nutrition. 2021;84:111106. PubMed, PubMedCentral, CrossRef
  22. Chang SW, Lee HC. Vitamin D and health – The missing vitamin in humans. Pediatr Neonatol. 2019;60(3):237-244. PubMed, CrossRef
  23. Khomenko AV. Cholecalciferol hydroxylation in rat hepatocytes under the influence of prednisolone. Ukr Biokhim Zhurn. 2013;85(3):90-95. (In Ukrainia). PubMed, CrossRef
  24. Shymanskyi IO, Mazanova AO, Lisakovska OO, Labudzynskyi DO, Makarova OO, Komisarenko YuI, Veliky MM. The role of vitamin D-auto-/paracrine system in the development of metabolic inflammation of liver tissue in experimental type 2 diabetes. Endocrinology. 2021;26(3):271-280. (In Ukrainian). CrossRef
  25. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev. 2016;96(1):365-408. PubMed, PubMedCentral, CrossRef
  26. Mazanova A, Shymanskyi I, Lisakovska O, Labudzynskyi D, Khomenko A, Veliky M. The link between vitamin D status and NF-κB-associated renal dysfunction in experimental diabetes mellitus. Biochim Biophys Acta Gen Subj. 2022;1866(7):130136. PubMed, CrossRef
  27. Bouillon R, Bikle D. Vitamin D Metabolism Revised: Fall of Dogmas. J Bone Miner Res. 2019;34(11):1985-1992. PubMed, PubMedCentral, CrossRef
  28. Veklich TO, Nikonishyna YuV, Kosterin SO. Pathways and mechanisms of transmembrane calcium ions exchange in the cell nucleus. Ukr Biochem J. 2018;90(4):5-24. CrossRef
  29. Young K, Beggs MR, Grimbly C, Alexander RT. Regulation of 1 and 24 hydroxylation of vitamin D metabolites in the proximal tubule. Exp Biol Med (Maywood). 2022;247(13):1103-1111. PubMed, PubMedCentral, CrossRef
  30. Goldstein DA. Serum Calcium. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition. Boston: Butterworths; 1990. Chapter 143. Available at https://www.ncbi.nlm.nih.gov/books/NBK250/
  31. Wawrzyniak N, Suliburska J, Kulczyński B, Kołodziejski P, Kurzawa P, Gramza-Michałowska A. Calcium-Enriched Pumpkin Affects Serum Leptin Levels and Fat Content in a Rat Model of Postmenopausal Osteoporosis. Nutrients. 2021;13(7):2334. PubMed, PubMedCentral, CrossRef
  32. Bauer NB, Khassawna TE, Goldmann F, Stirn M, Ledieu D, Schlewitz G, Govindarajan P, Zahner D, Weisweiler D, Schliefke N, Böcker W, Schnettler R, Heiss C, Moritz A. Characterization of bone turnover and energy metabolism in a rat model of primary and secondary osteoporosis. Exp Toxicol Pathol. 2015;67(4):287-296. PubMed, CrossRef
  33. Bikle DD. Vitamin D and bone. Curr Osteoporos Rep. 2012;10(2):151-159. PubMed, PubMedCentral, CrossRef
  34. Song L. Calcium and Bone Metabolism Indices. Adv Clin Chem. 2017;82:1-46. PubMed, CrossRef
  35. Morgan EN, Alsharidah AS, Mousa AM, Edrees HM. Irisin Has a Protective Role against Osteoporosis in Ovariectomized Rats. Biomed Res Int. 2021;2021:5570229. PubMed, PubMedCentral, CrossRef
  36. Halper-Stromberg E, Gallo T, Champakanath A, Taki I, Rewers M, Snell-Bergeon J, Frohnert BI, Shah VN. Bone Mineral Density across the Lifespan in Patients with Type 1 Diabetes. J Clin Endocrinol Metab. 2020;105(3):746-753. PubMed, PubMedCentral, CrossRef
  37. Silva MJ, Brodt MD, Lynch MA, McKenzie JA, Tanouye KM, Nyman JS, Wang X. Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life. J Bone Miner Res. 2009;24(9):1618-1627. PubMed, PubMedCentral, CrossRef
  38. Reid IR, Bolland MJ. Calcium and/or Vitamin D Supplementation for the Prevention of Fragility Fractures: Who Needs It? Nutrients. 2020;12(4):1011. PubMed, PubMedCentral, CrossRef
  39. Williams C, Sapra A. Osteoporosis Markers. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Available at https://www.ncbi.nlm.nih.gov/books/NBK559306/ (accessed, May, 2022).
  40. Komisarenko SV, Volochnyuk DM, Shymanskyy IO, Ivonin SP, Veliky MM. Effectiveness of nitrogen-containing bisphosphonates in regulation of mineral metabolism in alimentary osteoporosis in rats. Biotechnologia Acta. 2015;8(4):53-62. CrossRef
  41. Bellastella G, Scappaticcio L, Longo M, Carotenuto R, Carbone C, Caruso P, Maio A, Paglionico VA, Vietri MT, Maiorino MI, Esposito K. New insights into vitamin D regulation: is there a role for alkaline phosphatase? J Endocrinol Invest. 2021;44(9):1891-1896. PubMed, PubMedCentral, CrossRef
  42. van de Peppel J, van Leeuwen JP. Vitamin D and gene networks in human osteoblasts. Front Physiol. 2014;5:137. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.