Ukr.Biochem.J. 2022; Том 94, № 3, травень-червень, c. 81-91

doi: https://doi.org/10.15407/ubj94.03.081

Особливості віруцидної активності декаметоксину: дослідження in vitro та in silico

І. В. Семенюта1*, О. П. Трохименко2, I. В. Дзюблик2, С. О. Соловйов2,3,
В. В. Трохимчук2, О. Л. Боророва4, Д. M. Година1,
М. П. Сметюх3, О. К. Яковенко5, Л. О. Метелиця1

1Інститут біоорганічної хімії та нафтохімії ім. В. П. Кухаря НАН України, Київ;
2Національний університет охорони здоров’я України імені П.Л. Шупика, Київ, Україна;
3Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Київ;
4Національний інститут фтизіатрії і пульмонології ім. Ф. Г. Яновського НАМН України, Київ;
5Волинська обласна клінічна лікарня, Луцьк, Україна;
*e-mail: ivan@bpci.kiev.ua

Отримано: 09 червня 2021; Виправлено: 29 червня 2022;
Затверджено: 29 вересня 2022; Доступно онлайн: 06 жовтня 2022

Наведено дані щодо короткочасної дії декаметоксину на штам H120 вірусу інфекційного бронхіту (IBV), який використовується як безпечна для людини модель вірусу SARS-CoV-2. Вірусну активність оцінювали за допомогою інвертованого мікроскопа PrimoVert (Німеччина) за деструктивною дією на лінію фібробластів BHK21. Результати in vitro показали, що декаметоксин (100 мкг/мл) повністю інактивував штам коронавірусу IBV при експозиції 30 с і більше. Під час найнижчої експозиції декаметоксину 10 сек антисептична віруліцидна активність становила 33 і 36% від контролю через 24 і 48 год культивування відповідно. Молекулярний докінг-аналіз вказав на значну подібність структури основної протеази (Mpro) IBV та SARS-CoV-2. Докінг-дослідження взаємодії декаметоксину з активними центрами IBV Mpro та SARS-CoV-2 Mpro продемонстрували утворення ліганд-протеїнових комплексів з орієнтовною енергією зв’язування -8,6, -8,4 ккал/моль та ключовими амінокислотними залишками ASN26, GLY141, GLU187, GLU164 , THR24, THR25, ASN142, GLY143, CYS145, HIS164 і GLU166.

Ключові слова: , , , , , ,


Посилання:

  1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. PubMed, PubMedCentral, CrossRef
  2. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, de Wit E, Munster VJ. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564-1567. PubMed, PubMedCentral, CrossRef
  3. Rutala WA, Weber DJ. Disinfection, sterilization, and antisepsis: An overview. Am J Infect Control. 2019;47S:A3-A9. PubMed, CrossRef
  4. Choi A, Koch M, Wu K, Chu L, Ma L, Hill A, Nunna N, Huang W, Oestreicher J, Colpitts T, Bennett H, Legault H, Paila Y, Nestorova B, Ding B, Montefiori D, Pajon R, Miller JM, Leav B, Carfi A, McPhee R, Edwards DK. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis. Nat Med. 2021;27(11):2025-2031. PubMed, PubMedCentral, CrossRef
  5. Dhama K, Patel SK, Kumar R, Masand R, Rana J, Yatoo MI, Tiwari R, Sharun K, Mohapatra RK, Natesan S, Dhawan M, Ahmad T, Emran TB, Malik YS, Harapan H. The role of disinfectants and sanitizers during COVID-19 pandemic: advantages and deleterious effects on humans and the environment. Environ Sci Pollut Res Int. 2021;28(26):34211-34228. PubMed, PubMedCentral, CrossRef
  6. Yoo JH. Review of Disinfection and Sterilization – Back to the Basics. Infect Chemother. 2018;50(2):101-109. PubMed, PubMedCentral, CrossRef
  7. Kunduru KR, Kutner N, Nassar-Marjiya E, Shaheen-Mualim M, Rizik L, Farah S. Disinfectants role in the prevention of spreading the COVID-19 and other infectious diseases: The need for functional polymers! Polym Adv Technol. 2022;10.1002/pat.5689. PubMed, PubMedCentral, CrossRef
  8. Dan W, Gao J, Qi X, Wang J, Dai J. Antibacterial quaternary ammonium agents: Chemical diversity and biological mechanism. Eur J Med Chem. 2022;243:114765. PubMed, CrossRef
  9. Wieczorek D, Dobrowolski A, Staszak K, Kwaśniewska D, Dubyk P. Synthesis, Surface and Antimicrobial Activity of Piperidine-Based Sulfobetaines. J Surfactants Deterg. 2017;20(1):151-158. PubMed, PubMedCentral, CrossRef
  10. Dewey HM, Jones JM, Keating MR, Budhathoki-Uprety J. Increased use of disinfectants during the COVID-19 pandemic and its potential impacts on health and safety. ACS Chem Health Saf. 2021; 29(1); 27-38. CrossRef
  11. Gorbalenya AE, Baker SC, Baric RS, De Groot EJ, DrostenC, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, Poon LLM, Samborskiy DV, Sidorov IA, Sola I, Ziebuhr J. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-544. PubMed, PubMedCentral, CrossRef
  12. Gerba CP. Quaternary ammonium biocides: efficacy in application. Appl Environ Microbiol. 2015;81(2):464-469. PubMed, PubMedCentral, CrossRef
  13. Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP. Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. Int J Mol Sci. 2021;22(13):6793. PubMed, PubMedCentral, CrossRef
  14. Statistics of publications about QACs for 2021. Available at https://scholar.google.com/scholar? as_ylo=2021&q=quaternary+ammonium+compounds+&hl=en&as_sdt=0,5 (accessed, Yuli, 2022).
  15. Huang Y, Xiao S, Song D, Yuan Z. Evaluating the virucidal activity of four disinfectants against SARS-CoV-2. Am J Infect Control. 2022;50(3):319-324. PubMed, PubMedCentral, CrossRef
  16. Baker N, Williams AJ, Tropsha A, Ekins S. Repurposing Quaternary Ammonium Compounds as Potential Treatments for COVID-19. Pharm Res. 2020;37(6):104. PubMed, PubMedCentral, CrossRef
  17. Schrank CL, Minbiole KPC, Wuest WM. Are Quaternary Ammonium Compounds, the Workhorse Disinfectants, Effective against Severe Acute Respiratory Syndrome-Coronavirus-2? ACS Infect Dis. 2020;6(7):1553-1557. PubMed, PubMedCentral, CrossRef
  18. Halushko O. A clinical view on the possibility and feasibility of using decamethoxin during the COVID-19 pandemic. Perioperaciina Medicina. 2021;4(1):30-38.
  19. Gumeniuk G, Gumeniuk M, Dziublik I, Fadeeva S, Opimakh S, Denysov O. The efficacy of the decamethoxin against simple and complex viruses. Eur Respir J. 2020;56:2388. CrossRef
  20. Attri P, Choi S, Kim M, Shiratani M, Cho AE, Lee W. Influence of alkyl chain substitution of ammonium ionic liquids on the activity and stability of tobacco etch virus protease. Int J Biol Macromol. 2020;155:439-446. PubMed, CrossRef
  21. Bororova O. Efficacy and safety of decamethoxin in complex treatment of patients with group III viral-bacterial community-acquired pneumonia. Infusion Chemotherapy. 2021;(1):15-21. CrossRef
  22.  Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-192. PubMed, PubMedCentral, CrossRef
  23. Bharadwaj S, Azhar EI, Kamal MA, Bajrai LH, Dubey A, Jha K, Yadava U, Kang SG, Dwivedi VD. SARS-CoV-2 M pro inhibitors: identification of anti-SARS-CoV-2 M pro compounds from FDA approved drugs. J Biomol Struct Dyn. 2022;40(6):2769-2784. PubMed, PubMedCentral, CrossRef
  24. Rut W, Groborz K, Zhang L, Sun X, Zmudzinski M, Pawlik B, Młynarski W, Hilgenfeld R, Drag M. Substrate specificity profiling of SARS-CoV-2 main protease enables design of activity-based probes for patient-sample imaging. bioRxiv; 2020. CrossRef
  25. Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett. 2020;30(17):127377.
    PubMed, PubMedCentral, CrossRef
  26. Ma C, Sacco MD, Hurst B, Townsend JA, Hu Y, Szeto T, Zhang X, Tarbet B, Marty MT, Chen Y, Wang J. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020;30(8):678-692. PubMed, PubMedCentral, CrossRef
  27. Sethi A, Joshi K, Sasikala K, Alvala M. Molecular docking in modern drug discovery: Principles and recent applications. Drug Discovery and Development-new advances. 2019; 2;2; 1-21. CrossRef
  28. Phillips MA, Stewart MA, Woodling DL, Xie ZR. Has molecular docking ever brought us a medicine? Molecular docking. 2018;141. CrossRef
  29. Panwar U, Chandra I, Selvaraj C, Singh SK. Current Computational Approaches for the Development of Anti-HIV Inhibitors: An Overview. Curr Pharm Des. 2019;25(31):3390-3405. PubMed, CrossRef
  30. Khan MA, Mahmud S, Alam ASMRU, Rahman ME, Ahmed F, Rahmatullah M. Comparative molecular investigation of the potential inhibitors against SARS-CoV-2 main protease: a molecular docking study. J Biomol Struct Dyn. 2021;39(16):6317-6323. PubMed, PubMedCentral, CrossRef
  31. M Najimudeen S, H Hassan MS, C CorkS Abdul-Careem MF. Infectious Bronchitis Coronavirus Infection in Chickens: Multiple System Disease with Immune Suppression. Pathogens. 2020;9(10):779. PubMed, PubMedCentral, CrossRef
  32. Crystal structure of the IBV main protease. (2022). Retrieved from https://www.rcsb.org/structure/2Q6F.
  33. Crystal structure of the SARS-CoV-2 main protease. (2020). Retrieved from https://www.rcsb.org/structure/7L0D.
  34. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17(1):57-61. PubMed
  35. Marvin Sketch was used for drawing, displaying and optimization chemical structures, Marvin Sketch 5.3.735, 2022, ChemAxon (https://www.chemaxon.com).
  36. MOPAC2016, James J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2022).
  37. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.
    J Comput Chem. 2010;31(2):455-461. PubMed, PubMedCentral, CrossRef
  38. Dassault Systèmes BIOVIA. Discovery Studio Visualizer, v4.0.100.13345. San Diego: Dassault Systèmes; 2022.
  39. Xue X, Yu H, Yang H, Xue F, Wu Z, Shen W, Li J, Zhou Z, Ding Y, Zhao Q, Zhang XC, Liao M, Bartlam M, Rao Z. Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J Virol. 2008;82(5):2515-2527. PubMed, PubMedCentral, CrossRef
  40. Dzyublik IV, Trokhimenko OP, Soloviov SO, Trokhymchuk VV, Bororova OL, Yakovenko OK. Efficacy decametoxin in vitro for quick inactivation of respiratory coronavirus. Farmatsevt Zhurn. 2022;25(2);87-101. (In Ukrainian). CrossRef
  41. Crystal structure of the SARS-CoV-2 main protease. (2020). Retrieved from https://www.rcsb.org/structure/ 7C8B.
  42. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-410. PubMed, CrossRef
  43. Pundir S, Martin MJ, O’Donovan C, UniProt Consortium. UniProt Tools. Curr Protoc Bioinformatics. 2016;53:1.29.1-1.29.15. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.