Ukr.Biochem.J. 2022; Том 94, № 4, липень-серпень, c. 5-17

doi: https://doi.org/10.15407/ubj94.04.005

Структурні протеїни у механізмах збирання віріонів бетакоронавірусу

І. Залоїло1*, О. Залоїло2, Ю. Рудь3, Л. Бучацький3

1Національний університет біоресурсів і природокористування України, Київ;
2Інститут рибного господарства НААН України, Київ;
3ННЦ «Інститут біології та медицини», Київський національний університет імені Тараса Шевченка, Україна;
*e-mail: zaloilo76@gmail.com; iridolpb@gmail.com

Отримано: 08 серпня 2022; Виправлено: 31 серпня 2022;
Затверджено: 04 листопада 2022; Доступно онлайн: 14 листопада 2022

Поява SARS-CoV-2 спричинила нагальну потребу дослідити молекулярні механізми його розмноження. Однак наразі детального покрокового механізму збирання віріону SARS-CoV-2 не описано. У представленому огляді проаналізовано дані про роль структурних протеїнів у ефективній збірці частинок бетакоронавірусу.

Ключові слова: , , ,


Посилання:

  1. Whittaker GR, Daniel S, Millet JK. Coronavirus entry: how we arrived at SARS-CoV-2. Curr Opin Virol. 2021;47:113-120. PubMed, PubMedCentral, CrossRef
  2. Guruprasad L. Human coronavirus spike protein-host receptor recognition. Prog Biophys Mol Biol. 2021;161:39-53. PubMed, PubMedCentral, CrossRef
  3. Nadeem MS, Zamzami MA, Choudhry H, Murtaza BN, Kazmi I, Ahmad H, Shakoori AR. Origin, Potential Therapeutic Targets and Treatment for Coronavirus Disease (COVID-19). Pathogens. 2020;9(4):307. PubMed, PubMedCentral, CrossRef
  4. Voskarides K. SARS-CoV-2: tracing the origin, tracking the evolution. BMC Med Genomics. 2022;15(1):62. PubMed, PubMedCentral, CrossRef
  5. Kaur N, Singh R, Dar Z, Bijarnia RK, Dhingra N, Kaur T. Genetic comparison among various coronavirus strains for the identification of potential vaccine targets of SARS-CoV2. Infect Genet Evol. 2021;89:104490. PubMed, PubMedCentral, CrossRef
  6. Chakravarty D, Das Sarma J. Murine-β-coronavirus-induced neuropathogenesis sheds light on CNS pathobiology of SARS-CoV2. J Neurovirol. 2021;27(2):197-216. PubMed, PubMedCentral, CrossRef
  7. Mendonça L, Howe A, Gilchrist JB, Sun D, Knight ML, Zanetti-Domingues LC, Bateman B, Krebs AS, Chen L, Radecke J, Sheng Y, Li VD, Ni T, Kounatidis I, MoA Koronfel, Szynkiewicz M, Harkiolaki M, Martin-Fernandez ML, James W, Zhang P. SARS-CoV-2 Assembly and Egress Pathway Revealed by Correlative Multi-modal Multi-scale Cryo-imaging. bioRxiv. 2020;2020.11.05.370239. PubMed, PubMedCentral, CrossRef
  8. Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem. 2020;295(37):12910-12934. PubMed, PubMedCentral, CrossRef
  9. Knoops K, Kikkert M, van den Worm SHE, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, Mommaas AM, Snijder EJ. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 2008;6(9):e226. PubMed, PubMedCentral, CrossRef
  10. Snijder EJ, Limpens RWAL, de Wilde AH, de Jong AWM, Zevenhoven-Dobbe JC, Maier HJ, Faas FFGA, Koster AJ, Bárcena M. A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis. PLoS Biol. 2020;18(6):e3000715. PubMed, PubMedCentral, CrossRef
  11. Wolff G, Melia CE, Snijder EJ, Bárcena M. Double-Membrane Vesicles as Platforms for Viral Replication. Trends Microbiol. 2020;28(12):1022-1033. PubMed, PubMedCentral, CrossRef
  12.  Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio. 2013;4(4):e00524-13. PubMed, PubMedCentral, CrossRef
  13. Wolff G, Limpens RWAL, Zevenhoven-Dobbe JC, Laugks U, Zheng S, de Jong AWM, Koning RI, Agard DA, Grünewald K, Koster AJ, Snijder EJ, Bárcena M. A molecular pore spans the double membrane of the coronavirus replication organelle. Science. 2020;369(6509):1395-1398. PubMed, PubMedCentral, CrossRef
  14. Klein S, Cortese M, Winter SL, Wachsmuth-Melm M, Neufeldt CJ, Cerikan B, Stanifer ML, Boulant S, Bartenschlager R, Chlanda P. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat Commun. 2020;11(1):5885. PubMed, PubMedCentral, CrossRef
  15. Qu Y, Wang X, Zhu Y, Wang W, Wang Y, Hu G, Liu C, Li J, Ren S, Xiao MZX, Liu Z, Wang C, Fu J, Zhang Y, Li P, Zhang R, Liang Q. ORF3a-Mediated Incomplete Autophagy Facilitates Severe Acute Respiratory Syndrome Coronavirus-2 Replication. Front Cell Dev Biol. 2021;9:716208. PubMed, PubMedCentral, CrossRef
  16. Lu S, Ye Q, Singh D, Cao Y, Diedrich JK, Yates JR 3rd, Villa E, Cleveland DW, Corbett KD. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat Commun. 2021;12(1):502. PubMed, PubMedCentral, CrossRef
  17.  Masters PS. Coronavirus genomic RNA packaging. Virology. 2019;537:198-207. PubMed, PubMedCentral, CrossRef
  18. Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, Prashar V, Gupta GD, Panicker L, Kumar M. Structural insights into SARS-CoV-2 proteins. J Mol Biol. 2021;433(2):166725. PubMed, PubMedCentral, CrossRef
  19. Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD, Ward MD, Zimmerman MI, Vithani N, Griffith D, Wagoner JA, Bowman GR, Hall KB, Soranno A, Holehouse AS. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat Commun. 2021;12(1):1936.
    PubMed, PubMedCentral, CrossRef
  20. Chang CK, Chen CM, Chiang MH, Hsu YL, Huang TH. Transient oligomerization of the SARS-CoV N protein – implication for virus ribonucleoprotein packaging. PLoS One. 2013;8(5):e65045. PubMed, PubMedCentral, CrossRef
  21. Hsieh PK, Chang SC, Huang CC, Le TT, Hsiao CW, Kou YH, Chen IY, Chang CK, Huang TH, Chang MF. Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J Virol. 2005;79(22):13848-13855. PubMed, PubMedCentral, CrossRef
  22. Ye Q, West AMV, Silletti S, Corbett KD. Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. Protein Sci. 2020;29(9):1890-1901. PubMed, PubMedCentral, CrossRef
  23. Iserman C, Roden C, Boerneke M, Sealfo R, McLaughlin G, Jungreis I, Park C, Boppana A, Fritch E, Hou YJ, Theesfeld C, Troyanskaya OG, Baric RS, Sheahan TP, Weeks K, Gladfelter S. Specific viral RNA drives the SARS CoV-2 nucleocapsid to phase separate. bioRxiv. 2020;2020.06.11.147199. PubMed, PubMedCentral, CrossRef
  24. Narayanan K, Chen CJ, Maeda J, Makino S. Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal. J Virol. 2003;77(5):2922-2927. PubMed, PubMedCentral, CrossRef
  25.  Caul EO, Egglestone SI. Coronavirus-like particles present in simian faeces. Vet Rec. 1979;104(8):168-169. PubMed, CrossRef
  26. Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, Milligan RA, Yeager M, Buchmeier MJ. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol. 2006;80(16):7918-7928. PubMed, PubMedCentral, CrossRef
  27. Bárcena M, Oostergetel GT, Bartelink W, Faas FG, Verkleij A, Rottier PJ, Koster AJ, Bosch BJ. Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion. Proc Natl Acad Sci USA. 2009;106(2):582-587. PubMed, PubMedCentral, CrossRef
  28. Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, Zhang J, Weng T, Zhang Z, Wu Z, Cheng L, Shi D, Lu X, Lei J, Crispin M, Shi Y, Li L, Li S. Molecular Architecture of the SARS-CoV-2 Virus. Cell. 2020;183(3):730-738.e13. PubMed, PubMedCentral, CrossRef
  29. Peng Y, Du N, Lei Y, Dorje S, Qi J, Luo T, Gao GF, Song H. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. EMBO J. 2020;39(20):e105938. PubMed, PubMedCentral, CrossRef
  30. Hardenbrook NJ, Zhang P. A structural view of the SARS-CoV-2 virus and its assembly. Curr Opin Virol. 2022;52:123-134. PubMed, PubMedCentral, CrossRef
  31. Bai Z, Cao Y, Liu W, Li J. The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation. Viruses. 2021;13(6):1115. PubMed, PubMedCentral, CrossRef
  32. Carlson CR, Asfaha JB, Ghent CM, Howard CJ, Hartooni N, Safari M, Frankel AD, Morgan DO. Phosphoregulation of Phase Separation by the SARS-CoV-2 N Protein Suggests a Biophysical Basis for its Dual Functions. Mol Cell. 2020;80(6):1092-1103.e4. PubMed, PubMedCentral, CrossRef
  33. Luo H, Wu D, Shen C, Chen K, Shen X, Jiang H. Severe acute respiratory syndrome coronavirus membrane protein interacts with nucleocapsid protein mostly through their carboxyl termini by electrostatic attraction. Int J Biochem Cell Biol. 2006;38(4):589-599. PubMed, PubMedCentral, CrossRef
  34. Satarker S, Nampoothiri M. Structural Proteins in Severe Acute Respiratory Syndrome Coronavirus-2. Arch Med Res. 2020;51(6):482-491. PubMed, PubMedCentral, CrossRef
  35. Hogue BG, Machamer CE. Coronavirus Structural Proteins and Virus Assembly. Nidoviruses. 2008;179-200. CrossRef
  36. Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, Droese B, Klaus JP, Makino S, Sawicki SG, Siddell SG, Stamou DG, Wilson IA, Kuhn P, Buchmeier MJ. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174(1):11-22. PubMed, PubMedCentral, CrossRef
  37. Thomas S. The Structure of the Membrane Protein of SARS-CoV-2 Resembles the Sugar Transporter SemiSWEET. Pathog Immun. 2020;5(1):342-363. PubMed, PubMedCentral, CrossRef
  38. Kuo L, Hurst-Hess KR, Koetzner CA, Masters PS. Analyses of Coronavirus Assembly Interactions with Interspecies Membrane and Nucleocapsid Protein Chimeras. J Virol. 2016;90(9):4357-4368. PubMed, PubMedCentral, CrossRef
  39. de Haan CA, Vennema H, Rottier PJ. Assembly of the coronavirus envelope: homotypic interactions between the M proteins. J Virol. 2000;74(11):4967-4978. PubMed, PubMedCentral, CrossRef
  40. Zhang R, Li Y, Cowley TJ, Steinbrenner AD, Phillips JM, Yount BL, Baric RS, Weiss SR. The nsp1, nsp13, and M proteins contribute to the hepatotropism of murine coronavirus JHM.WU. J Virol. 2015;89(7):3598-3609. PubMed, PubMedCentral, CrossRef
  41. Arndt AL, Larson BJ, Hogue BG. A conserved domain in the coronavirus membrane protein tail is important for virus assembly. J Virol. 2010;84(21):11418-11428. PubMed, PubMedCentral, CrossRef
  42. Huang Y, Yang ZY, Kong WP, Nabel GJ. Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: implications for assembly and vaccine production. J Virol. 2004;78(22):12557-12565. PubMed, PubMedCentral, CrossRef
  43. Yuan Z, Hu B, Xiao H, Tan X, Li Y, Tang K, Zhang Y, Cai K, Ding B. The E3 Ubiquitin Ligase RNF5 Facilitates SARS-CoV-2 Membrane Protein-Mediated Virion Release. mBio. 2022;13(1):e0316821. PubMed, PubMedCentral, CrossRef
  44. Boson B, Legros V, Zhou B, Siret E, Mathieu C, Cosset FL, Lavillette D, Denolly S. The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J Biol Chem. 2021;296:100111. PubMed, PubMedCentral, CrossRef
  45. Kumar B, Hawkins GM, Kicmal T, Qing E, Timm E, Gallagher T. Assembly and Entry of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2): Evaluation Using Virus-Like Particles. Cells. 2021;10(4):853. PubMed, PubMedCentral, CrossRef
  46. Zaloilo I, Rud Y, Zaloilo О, Buchatskyi L. Coronavirus viroporins: structure and function. Ukr Biochem J. 2021;93(1):5-17. CrossRef
  47. Cohen JR, Lin LD, Machamer CE. Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein. J Virol. 2011;85(12):5794-5803. PubMed, PubMedCentral, CrossRef
  48. Pearson GJ, Broncel M, Snijders AP, Carlton JG. Exploitation of the Secretory Pathway by SARSCoV-2 Envelope. bioRxiv. 2021. CrossRef
  49. Miserey-Lenkei S, Trajkovic K, D’Ambrosio JM, Patel AJ, Čopič A, Mathur P, Schauer K, Goud B, Albanèse V, Gautier R, Subra M, Kovacs D, Barelli H, Antonny B. A comprehensive library of fluorescent constructs of SARS-CoV-2 proteins and their initial characterisation in different cell types. Biol Cell. 2021;113(7):311-328. PubMed, PubMedCentral, CrossRef
  50. Bracquemond D, Muriaux D. Betacoronavirus Assembly: Clues and Perspectives for Elucidating SARS-CoV-2 Particle Formation and Egress. mBio. 2021;12(5):e0237121. PubMed, PubMedCentral, CrossRef
  51. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69. PubMed, PubMedCentral, CrossRef
  52. Breitinger U, Farag NS, Sticht H, Breitinger HG. Viroporins: Structure, function, and their role in the life cycle of SARS-CoV-2. Int J Biochem Cell Biol. 2022;145:106185. PubMed, PubMedCentral, CrossRef
  53. Xu C, Lu P, Gamal El-Din TM, Pei XY, Johnson MC, Uyeda A, Bick MJ, Xu Q, Jiang D, Bai H, Reggiano G, Hsia Y, Brunette TJ, Dou J, Ma D, Lynch EM, Boyken SE, Huang PS, Stewart L, DiMaio F, Kollman JM, Luisi BF, Matsuura T, Catterall WA, Baker D. Computational design of transmembrane pores. Nature. 2020;585(7823):129-134. PubMed, PubMedCentral, CrossRef
  54. Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, Hong M. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol. 2020;27(12):1202-1208. PubMed, PubMedCentral, CrossRef
  55.  Ye Y, Hogue BG. Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. J Virol. 2007;81(7):3597-3607. PubMed, PubMedCentral, CrossRef
  56. Swann H, Sharma A, Preece B, Peterson A, Eldredge C, Belnap DM , Vershinin M, Saffarian S. Minimal system for assembly of SARS-CoV-2 virus like particles. Sci Rep. 2020;10(1):21877. PubMed, PubMedCentral, CrossRef
  57. Tseng YT, Wang SM, Huang KJ, Wang CT. SARS-CoV envelope protein palmitoylation or nucleocapid association is not required for promoting virus-like particle production. J Biomed Sci. 2014;21(1):34. PubMed, PubMedCentral, CrossRef
  58. Saputri DS, Li S, van Eerden FJ, Rozewicki J, Xu Z, Ismanto HS, Davila A, Teraguchi S, Katoh K, Standley DM. Flexible, functional, and familiar: characteristics of SARS-CoV-2 spike protein evolution. Front Microbiol. 2020;11:2112. PubMed, PubMedCentral, CrossRef
  59. Candido KL, Eich CR, de Fariña LO, Kadowaki MK, da Conceição Silva JL, Maller A, Simão RCG. Spike protein of SARS-CoV-2 variants: a brief review and practical implications. Braz J Microbiol. 2022;53(3):1133-1157. PubMed, PubMedCentral, CrossRef
  60. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-569. PubMed, PubMedCentral, CrossRef
  61. Xu R, Shi M, Li J, Song P, Li N. Construction of SARS-CoV-2 Virus-Like Particles by Mammalian Expression System. Front Bioeng Biotechnol. 2020;8:862. PubMed, PubMedCentral, CrossRef
  62. Siu YL, Teoh KT, Lo J, Chan CM, Kien F, Escriou N, Tsao SW, Nicholls JM, Altmeyer R, Peiris JSM, Bruzzone R, Nal B. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol. 2008;82(22):11318-11330. PubMed, PubMedCentral, CrossRef
  63. Mortola E, Roy P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 2004;576(1-2):174-178. PubMed, PubMedCentral, CrossRef
  64. Vennema H, Godeke GJ, Rossen JW, Voorhout WF, Horzinek MC, Opstelten DJ, Rottier PJ. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 1996;15(8):2020-2028. PubMed, PubMedCentral, CrossRef
  65. Kuzmin A, Orekhov P, Astashkin R, Gordeliy V, Gushchin I. Structure and dynamics of the SARS-CoV-2 envelope protein monomer. Proteins. 2022;90(5):1102-1114. PubMed, CrossRef
  66. Klein S, Cortese M, Winter SL, Wachsmuth-Melm M, Neufeldt CJ, Cerikan B, Stanifer ML, Boulant S, Bartenschlager R, Chlanda P. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat Commun. 2020;11(1):5885. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.