Ukr.Biochem.J. 2023; Том 95, № 1, січень-лютий, c. 5-19

doi: https://doi.org/10.15407/ubj95.01.005

CRISPR як нова технологія для діагностики COVID-19

A. A. Saleem1*, A. F. Annooz2, I. M. A. Hadi3, A. H. H. Kabla4

1Medical Laboratory Techniques, Al-Hakim General Hospital, Najaf, Iraq;
2Faculty of Medicine, University of Kufa, Najaf, Iraq;
3Medical Laboratory Techniques, Al-Sadr Medical city, Najaf, Iraq;
4National Advanced IPv6 Centre, Universiti Sains Malaysia, Penang, Malaysia;
*e-mail: aliadil41994@gmail.com

Отримано: 30 листопада 2022; Виправлено: 21 лютого 2023;
Затверджено: 13 квітня 2023; Доступно онлайн: 27 квітня 2023

До теперішнього часу захворювання людини на COVID-19, що виникає внаслідок тяжкого гострого респіраторного синдрому, спричиненого коронавірусом 2 (SARS-CoV-2), залишається гострою проблемою для усього світу. У січні 2022 року зареєстровано понад 300 мільйонів випадків інфікування та понад 5 мільйонів смертей від COVID-19. Щоб протистояти такому швидкому поширенню, вкрай необхідні ефективні та недорогі методи діагностики, які допоможуть контролювати небезпеку пандемії. Технологія CRISPR довела свою ефективність у виявленні COVID-19 завдяки своїй простоті, специфічності та високій чутливості. У цьому огляді розглянуто сучасний стан розробки платформ CRISPR для діагностики та лікування COVID-19. Обговорюються обмеження та можливості CRISPR з точки зору методів аналізу нуклеїнових кислот для діагностики вірусних інфекцій.

Ключові слова: , , , ,


Посилання:

  1. Shahrajabian MH, Sun W, Cheng Q. Product of natural evolution (SARS, MERS, and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Hum Vaccin Immunother. 2021;17(1):62-83. PubMed, PubMedCentral, CrossRef
  2. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470-473. PubMed, PubMedCentral, CrossRef
  3. World Health Organization. https://covid19.who.int. Accessed 21 January 2022.
  4. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;27(2):taaa021. PubMed, PubMedCentral, CrossRef
  5. Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-286. PubMed, PubMedCentral, CrossRef
  6. Muhammad A, Ameer H, Haider SA, Ali I. Detection of SARS-CoV-2 using real-time polymerase chain reaction in different clinical specimens: A critical review. Allergol Immunopathol (Madr). 2021;49(1):159-164. PubMed, CrossRef
  7. Shukla RK, Rao NVA. CRISPR technology a silver lining in combating COVID-19 pandemic. Appl Biol Chem J. 2021;2(1):18-21.
    CrossRef
  8. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. PubMed, CrossRef
  9. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429-5433. PubMed, PubMedCentral, CrossRef
  10. Clark DP, Pazdernik NJ, McGehee MR. Chapter 20 – Genome Defense. In Molecular Biology/ Elsevier. 3rd ed. 2019, 622–653 p. CrossRef
  11. Payne S. Chapter 17 – Family Coronaviridae. Viruses. 2017; 149–158 p. CrossRef
  12. Wertheim JO, Chu DK, Peiris JS, Kosakovsky Pond SL, Poon LL. A case for the ancient origin of coronaviruses. J Virol. 2013;87(12):7039-7045. PubMed, PubMedCentral, CrossRef
  13. Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, Liu W, Bi Y, Gao GF. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016;24(6):490-502. PubMed, PubMedCentral, CrossRef
  14. Chang L, Yan Y, Wang L. Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus Med Rev. 2020;34(2):75-80. PubMed, PubMedCentral, CrossRef
  15. Lu G, Wang Q, Gao GF. Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 2015;23(8):468-478. PubMed, PubMedCentral, CrossRef
  16. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. PubMed, PubMedCentral, CrossRef
  17.  Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-192. PubMed, PubMedCentral, CrossRef
  18.  Woo PC, Huang Y, Lau SK, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses. 2010;2(8):1804-1820. PubMed, PubMedCentral, CrossRef
  19. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-423. PubMed, PubMedCentral, CrossRef
  20. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, Sheng J, Quan L, Xia Z, Tan W, Cheng G, Jiang T. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020;27(3):325-328. PubMed, PubMedCentral, CrossRef
  21. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020;26(6):729-734. PubMed, PubMedCentral, CrossRef
  22. Malik YS, Sircar S, Bhat S, Sharun K, Dhama K, Dadar M, Tiwari R, Chaicumpa W. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet Q. 2020;40(1):68-76. PubMed, PubMedCentral, CrossRef
  23. Van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, Osterhaus ADME, Haagmans BL, Gorbalenya AE, Snijder EJ, Fouchier RA. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012;3(6):e00473-12. PubMed, PubMedCentral, CrossRef
  24. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452. PubMed, PubMedCentral, CrossRef
  25. Rasmussen AL. On the origins of SARS-CoV-2. Nat Med. 2021;27(1):9. PubMed, CrossRef
  26. Li S, Li S, Disoma C, Zheng R, Zhou M, Razzaq A, Liu P, Zhou Y, Dong Z, Du A, Peng J, Hu L, Huang J, Feng P, Jiang T, Xia Z. SARS-CoV-2: Mechanism of infection and emerging technologies for future prospects. Rev Med Virol. 2021;31(2):e2168. PubMed, CrossRef
  27. Mallah SI, Ghorab OK, Al-Salmi S, Abdellatif OS, Tharmaratnam T, Iskandar MA, Sefen JAN, Sidhu P, Atallah B, El-Lababidi R, Al-Qahtani M. COVID-19: breaking down a global health crisis. Ann Clin Microbiol Antimicrob. 2021;20(1):35. PubMed, PubMedCentral, CrossRef
  28. Wang Q, Qiu Y, Li JY, Zhou ZJ, Liao CH, Ge XY. A Unique Protease Cleavage Site Predicted in the Spike Protein of the Novel Pneumonia Coronavirus (2019-nCoV) Potentially Related to Viral Transmissibility. Virol Sin. 2020;35(3):337-339. PubMed, PubMedCentral, CrossRef
  29. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-569. PubMed, PubMedCentral, CrossRef
  30. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. PubMed, PubMedCentral, CrossRef
  31. Fan C, Lu W, Li K, Ding Y, Wang J. ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Infection in COVID-19 Patients. Front Med (Lausanne). 2021;7:563893. PubMed, PubMedCentral, CrossRef
  32. Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol. 2020;18(9):2128-2130.e2. PubMed, PubMedCentral, CrossRef
  33. Wu C, Zheng M, Yang Y, Gu X, Yang K, Li M, Liu Y, Zhang Q, Zhang P, Wang Y, Wang Q, Xu Y, Zhou Y, Zhang Y, Chen L, Li H. Furin: A Potential Therapeutic Target for COVID-19. iScience. 2020;23(10):101642. PubMed, PubMedCentral, CrossRef
  34. Ashour HM, Elkhatib WF, Rahman M, Elshabrawy HA. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens. 2020;9(3):186. PubMed, PubMedCentral, CrossRef
  35. Nal B, Chan C, Kien F, Siu L, Tse J, Chu K, Kam J, Staropoli I, Crescenzo-Chaigne B, Escriou N, van der Werf S, Yuen KY, Altmeyer R. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol. 2005;86(Pt 5):1423-1434. PubMed, CrossRef
  36. Siu YL, Teoh KT, Lo J, Chan CM, Kien F, Escriou N, Nal B. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol. 2008;82(22):11318-11330. PubMed, PubMedCentral, CrossRef
  37. Kumar SU, Priya NM, Nithya SR, Kannan P, Jain N, Kumar DT, Magesh R, Younes S, Zayed H, Doss CGP. A review of novel coronavirus disease (COVID-19): based on genomic structure, phylogeny, current shreds of evidence, candidate vaccines, and drug repurposing.
    3 Biotech. 2021;11(4):198. PubMed, PubMedCentral, CrossRef
  38. Ganbaatar U, Liu C. CRISPR-Based COVID-19 Testing: Toward Next-Generation Point-of-Care Diagnostics. Front Cell Infect Microbiol. 2021;11:663949. PubMed, PubMedCentral, CrossRef
  39. Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F, Scarlata S, Agrò FE. COVID-19 diagnosis and management: a comprehensive review. J Intern Med. 2020;288(2):192-206. PubMed, PubMedCentral, CrossRef
  40. Coronavirus Testing Basics | FDA. Available at: https://www.fda.gov/consumers/consumer-updates/coronavirus-disease-2019-testing-basics
  41. Bastos ML, Tavaziva G, Abidi SK, Campbell JR, Haraoui LP, Johnston JC, Lan Z, Law S, MacLean E, Trajman A, Menzies D, Benedetti A, Khan FA. Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis. BMJ. 2020;370:m2516. PubMed, PubMedCentral, CrossRef
  42. Van Der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol. 2014;12(7):479-492. PubMed, PubMedCentral, CrossRef
  43. Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell. 2015;60(3):385-397. PubMed, PubMedCentral, CrossRef
  44. Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20(8):490-507. PubMed, PubMedCentral, CrossRef
  45. Pan A, Kraschel KL. CRISPR diagnostics: Underappreciated uses in perinatology. Semin Perinatol. 2018;42(8):525-530. PubMed, CrossRef
  46. Zhu N, Wong PK. Advances in Viral Diagnostic Technologies for Combating COVID-19 and Future Pandemics. SLAS Technol. 2020;25(6):513-521. PubMed, PubMedCentral, CrossRef
  47. Kumar P, Malik YS, Ganesh B, Rahangdale S, Saurabh S, Natesan S, Srivastava A, Sharun K, Yatoo MI, Tiwari R, Singh RK, Dhama K. CRISPR-Cas System: An Approach With Potentials for COVID-19 Diagnosis and Therapeutics. Front Cell Infect Microbiol. 2020;10:576875. PubMed, PubMedCentral, CrossRef
  48. Friedland AE, Baral R, Singhal P, Loveluck K, Shen S, Sanchez M, Marco1 E, Gotta GE, Maeder1 ML, Kennedy EM, Kornepati AVR, Sousa A, Collins MA, Jayaram1 H, Cullen BR, Bumcrot D. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol. 2015;16:257. PubMed, PubMedCentral, CrossRef
  49. Nouri R, Tang Z, Dong M, Liu T, Kshirsagar A, Guan W. CRISPR-based detection of SARS-CoV-2: A review from sample to result. Biosens Bioelectron. 2021;178:113012. PubMed, PubMedCentral, CrossRef
  50. Mohammadzadeh I, Qujeq D, Yousefi T, Ferns GA, Maniati M, Vaghari‐Tabari M. CRISPR/Cas9 gene editing: A new therapeutic approach in the treatment of infection and autoimmunity. IUBMB Life. 2020;72(8):1603-1621. PubMed, CrossRef
  51. Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell. 2018;172(6):1239-1259. PubMed, CrossRef
  52. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360(6387):436-439. PubMed, PubMedCentral, CrossRef
  53. Zhang, F, Abudayyeh, OO, Gootenberg JS. A protocol for detection of COVID-19 using CRISPR diagnostics. 2020; 8.‏ Regime of access : https://www.broadinstitute.org/files/publications/special/COVID-19%20detection%20(updated).pdf.
  54. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA. 2012;109(39):E2579-E2586. PubMed, PubMedCentral, CrossRef
  55. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE.
    Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34(2):184-191. PubMed, PubMedCentral, CrossRef
  56. Zhan Y, Li XP, Yin JY. COVID-19 one year later: a retrospect of CRISPR-Cas system in combating COVID-19. Int J Biol Sci. 2021;17(8):2080-2088. PubMed, PubMedCentral, CrossRef
  57. Moon J, Kwon HJ, Yong D, Lee IC, Kim H, Kang H, Lim EK, Lee KS, Jung J, Park HG, Kang T. Colorimetric Detection of SARS-CoV-2 and Drug-Resistant pH1N1 Using CRISPR/dCas9. ACS Sens. 2020;5(12):4017-4026. PubMed, PubMedCentral, CrossRef
  58. Xiong E, Jiang L, Tian T, Hu M, Yue H, Huang M, Lin W, Jiang Y, Zhu D, Zhou X. Simultaneous dual-gene diagnosis of SARS-CoV-2 based on CRISPR/Cas9-mediated lateral flow assay. Angew Chem Int Ed Engl. 2021;60(10):5307-5315. PubMed, CrossRef
  59. Azhar M, Phutela R, Ansari AH, Sinha D, Sharma N, Kumar M, Maiti S. Rapid, field-deployable nucleobase detection and identification using FnCas9. BioRxiv. 2020. CrossRef
  60. Aman R, Mahas A, Mahfouz M. Nucleic Acid Detection Using CRISPR/Cas Biosensing Technologies. ACS Synth Biol. 2020;9(6):1226-1233. PubMed, CrossRef
  61. 61. Wang J, Zhang C, Feng B. The rapidly advancing Class 2 CRISPR-Cas technologies: A customizable toolbox for molecular manipulations. J Cell Mol Med. 2020;24(6):3256-3270.
    PubMed, PubMedCentral, CrossRef
  62. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Oost JVD, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759-771. PubMed, PubMedCentral, CrossRef
  63. East-Seletsky A, O’Connell MR, Knight SC, Burstein D, Cate JH, Tjian R, Doudna JA. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature. 2016;538(7624):270-273. PubMed, PubMedCentral, CrossRef
  64. Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, Zorn K, Gopez A, Hsu E, Gu W, Miller S, Pan CY, Guevara H, Wadford DA, Chen JS, Chiu CY. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870-874. PubMed, PubMedCentral, CrossRef
  65. Joung J, Ladha A, Saito M, Kim NG, Woolley AE, Segel M, Barretto RPJ, Ranu A, Macrae RK, Faure G, Ioannidi EI, Krajeski RN, Bruneau R, Huang MLW, Yu XG, Li JZ, Walker BD, Hung DT, Greninger AL, Jerome KR, Gootenberg JS, Abudayyeh OO, Zhang F. Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. N Engl J Med. 2020;383(15):1492-1494. PubMed, PubMedCentral, CrossRef
  66. Ding X, Yin K, Li Z, Lalla RV, Ballesteros E, Sfeir MM, Liu C. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat Commun. 2020;11(1):4711. PubMed, PubMedCentral, CrossRef
  67. Chen Y, Shi Y, Chen Y, Yang Z, Wu H, Zhou Z, Li J, Ping J, He L, Shen H, Chen Z, Wu J, Yu Y, Zhang Y, Chen H. Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: A promising method in the point-of-care detection. Biosens Bioelectron. 2020;169:112642. PubMed, PubMedCentral, CrossRef
  68. Huang W, Yu L, Wen D, Wei D, Sun Y, Zhao H, Ye Y, Chen W, Zhu Y, Wang L, Wang L, Wu W, Zhao Q, Xu Y, Gu D, Nie G, Zhu D, Guo Z, Ma X, Niu L, Huang Y, Liu Y, Peng B, Zhang R, Zhang X, Li D, Liu Y, Yang G, Liu L, Zhou Y, Wang Y, Hou T, Gao Q, Li W, Chen S, Hu X, Han M, Zheng H, Weng J, Cai Z, Zhang X, Song F, Zhao G, Wang J. A CRISPR-Cas12a-based specific enhancer for more sensitive detection of SARS-CoV-2 infection. EBioMedicine. 2020;61:103036. PubMed, PubMedCentral, CrossRef
  69. Wang R, Qian C, Pang Y, Li M, Yang Y, Ma H, Zhao M, Qian F, Yu H, Liu Z, Ni T, Zheng Y, Wang Y. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection. Biosens Bioelectron. 2021;172:112766. PubMed, PubMedCentral, CrossRef
  70. Ali Z, Aman R, Mahas A, Rao GS, Tehseen M, Marsic T, Salunke R, Subudhi AK, Hala SM, Hamdan SM, Pain A, Alofi FS, Alsomali A, Hashem AM, Khogeer A, Almontashiri NAM, Abedalthagafi M, Hassan N, Mahfouz MM. iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res. 2020;288:198129. PubMed, PubMedCentral, CrossRef
  71. Ramachandran A, Huyke DA, Sharma E, Sahoo MK, Huang C, Banaei N, Pinsky BA, Santiago JG. Electric field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2. Proc Natl Acad Sci USA. 2020;117(47):29518-29525. PubMed, PubMedCentral, CrossRef
  72. Ning B, Yu T, Zhang S, Huang Z, Tian D, Lin Z, Niu A, Golden N, Hensley K, Threeton B, Lyon CJ, Yin XM, Roy CJ, Saba NS, Rappaport J, Wei Q, Hu TY. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Sci Adv. 2021;7(2):eabe3703. PubMed, PubMedCentral, CrossRef
  73. Wang X, Zhong M, Liu Y, Ma P, Dang L, Meng Q, Wan W, Ma X, Liu J, Yang G, Yang Z, Huang X, Liu M. Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Sci Bull (Beijing). 2020;65(17):1436-1439. PubMed, PubMedCentral, CrossRef
  74. Ma P, Meng Q, Sun B, Zhao B, Dang L, Zhong M, Liu S, Xu H, Mei H, Liu J, Chi T, Yang G, Liu M, Huang Z, Wang X. MeCas12a, a Highly Sensitive and Specific System for COVID-19 Detection. Adv Sci (Weinh). 2020;7(20):2001300. PubMed, PubMedCentral, CrossRef
  75. Nguyen LT, Smith BM, Jain PK. Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection. Nat Commun. 2020;11(1):4906. PubMed, PubMedCentral, CrossRef
  76. Huang Z, Ning B, Yang HS, Youngquist BM, Niu A, Lyon CJ, Beddingfield BJ, Fears AC, Monk CH, Murrell AE, Bilton SJ, Linhuber JP, Norton EB, Dietrich ML, Yee J, Lai W, Scott JW, Yin XM, Rappaport J, Robinson JE, Saba NS, Roy CJ, Zwezdaryk KJ, Zhao Z, Hu TY. Sensitive tracking of circulating viral RNA through all stages of SARS-CoV-2 infection. J Clin Invest. 2021;131(7):e146031. PubMed, PubMedCentral, CrossRef
  77. Sun Y, Yu L, Liu C, Ye S, Chen W, Li D, Huang W. One-tube SARS-CoV-2 detection platform based on RT-RPA and CRISPR/Cas12a. J Transl Med. 2021;19(1):74. PubMed, PubMedCentral, CrossRef
  78. Huang Z, Tian D, Liu Y, Lin Z, Lyon CJ, Lai W, Fusco D, Drouin A, Yin X, Hu T, Ning B. Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis. Biosens Bioelectron. 2020;164:112316. PubMed, PubMedCentral, CrossRef
  79. Guo L, Sun X, Wang X, Liang C, Jiang H, Gao Q, Dai M, Qu B, Fang S, Mao Y, Chen Y, Feng G, Gu Q, Wang RR, Zhou Q, Li W. SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov. 2020;6:34. PubMed, PubMedCentral, CrossRef
  80. Joung J, Ladha A, Saito M, Segel M, Bruneau R, Huang MLW, Kim NG, Yu X, Li J, Walker BD, Greninger AL, Jerome KR, Gootenberg JS, Abudayyeh OO, Zhang F. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv. 2020;2020.05.04.20091231. PubMed, PubMedCentral, CrossRef
  81. Fozouni P, Son S, de León Derby MD, Knott GJ, Gray CN, D’Ambrosio MV, Zhao C, Switz NA, Kumar GR, Stephens SI, Boehm D, Tsou CL, Shu J, Bhuiya A, Armstrong M, Harris AR, Chen PY, Osterloh JM, Meyer-Franke A, Joehnk B, Walcott K, Sil A, Langelier C, Pollard KS, Crawford ED, Puschnik AS, Phelps M, Kistler A, DeRisi JL, Doudna JA, Fletcher DA, Ott M. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell. 2021;184(2):323-333.e9. PubMed, PubMedCentral, CrossRef
  82. Cox DB, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F. RNA editing with CRISPR-Cas13. Science. 2017;358(6366):1019-1027. PubMed, PubMedCentral, CrossRef
  83. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438-442. PubMed, PubMedCentral, CrossRef
  84. Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14(10):2986-3012. PubMed, PubMedCentral, CrossRef
  85. Vatankhah M, Azizi A, Sanajouyan Langeroudi A, Ataei Azimi S, Khorsand I, Kerachian MA, Motaei J. CRISPR-based biosensing systems: a way to rapidly diagnose COVID-19. Crit Rev Clin Lab Sci. 2021;58(4):225-241. PubMed, CrossRef
  86. Patchsung M, Jantarug K, Pattama A, 40 co-authors, Uttamapinant C. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomed Eng. 2020; 4(12): 1140-1149. PubMed, CrossRef
  87. Agrawal S, Fanton A, Chandrasekaran SS, Prywes N, Lukarska M, Biering SB, Smock DCJ, Mok A, Knott GJ, Dis EV, Dugan E, Kim S, Liu TY, Harris E, Stanley SA, Lareau LF, Doudna JA, Savage DF, Hsu PD. Rapid detection of SARS-CoV-2 with Cas13. medRxiv. 2020. CrossRef
  88. Arizti-Sanz J, Freije CA, Stanton AC, 19 co-authors, Myhrvold C. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat Commun. 2020; 11(1): 5921. PubMed, PubMedCentral, CrossRef
  89. Hou T, Zeng W, Yang M, Chen W, Ren L, Ai J, Wu J, Liao Y, Gou X, Li Y, Wang X, Su H, Gu B, Wang J, Xu T. Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19. PLoS Pathog. 2020;16(8):e1008705. PubMed, PubMedCentral, CrossRef
  90. Rauch JN, Valois E, Solley SC, Braig F, Lach RS, Audouard M, Ponce-Rojas JC, Costello MS, Baxter NJ, Kosik KS, Arias C, Acosta-Alvear D, Wilson MZ. A Scalable, Easy-to-Deploy Protocol for Cas13-Based Detection of SARS-CoV-2 Genetic Material. J Clin Microbiol. 2021;59(4):e02402-20. PubMed, PubMedCentral, CrossRef
  91. Brogan DJ, Chaverra-Rodriguez D, Lin CP, Smidler AL, Yang T, Alcantara LM, Antoshechkin I, Liu J, Raban RR, Belda-Ferre P, Knight R, Komives EA, Akbari OS. A Sensitive, Rapid, and Portable CasRx-based Diagnostic Assay for SARS-CoV-2. medRxiv. 2020;2020.10.14.20212795. PubMed, PubMedCentral, CrossRef
  92. Nalawansha DA, Samarasinghe KT. Double-Barreled CRISPR Technology as a Novel Treatment Strategy For COVID-19. ACS Pharmacol Transl Sci. 2020;3(5):790-800.PubMed, PubMedCentral, CrossRef
  93. Lotfi M, Rezaei N. CRISPR/Cas13: A potential therapeutic option of COVID-19. Biomed Pharmacother. 2020;131:110738. PubMed, PubMedCentral, CrossRef
  94. Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, Chemparathy A, Chmura S, Heaton NS, Debs R, Pande T, Endy D, Russa MFL, Lewis DB, Qi LS. Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza. Cell. 2020;181(4):865-876.e12. PubMed, PubMedCentral, CrossRef
  95. Nguyen TM, Zhang Y, Pandolfi PP. Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res. 2020;30(3):189-190. PubMed, PubMedCentral, CrossRef
  96. Zou Y, Mason MG, Wang Y, Wee E, Turni C, Blackall PJ, Trau M, Botella JR. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biol. 2017;15(11):e2003916. PubMed, PubMedCentral, CrossRef
  97. Paul R, Ostermann E, Wei Q. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases. Biosens Bioelectron. 2020;169:112592.  PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.