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Biologically active food components are now considered to be remedies for the prevention and treat-
ment of metabolic disorders of different etiology. The aim of this review was to analyze the current data on 
the application of isothiocyanate sulforaphane, found in broccoli and other cruciferous plants, for the treat-
ment of T2DM, obesity, and their comorbidities with the presentation of established molecular, particularly 
dependent on NF-E2-related factor-2 (Nrf2), and signaling mechanisms of therapeutic effects. 
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According to the International Diabetes 
Federation, more than 400 million people 
worldwide suffer from diabetes mellitus, 

and 90% of these people belong to the category of 
patients with type 2 diabetes mellitus (T2DM) [1, 2]. 
This number is expected to rise to 500-640 million 
T2DM patients in the next few decades [2, 3]. Diabe-
tes is characterized as a group of metabolic disorders 
and complications related to impaired metabolism 
of glucose and lipids [4]. An increase in blood glu-
cose level due to insulin deficiency (type 1 diabetes 
mellitus) or the development of insulin resistance at 
high blood insulin levels (type 2 diabetes mellitus) 
is a characteristic feature of diabetes. The long-term 
persistence of hyperinsulinemia, hyperglycemia, and 
insulin resistance in T2DM leads to chronic damage 
to various tissues, such as the heart and skeletal mus-
cle, blood vessels, eyes, kidneys, and nervous system 
[5]. T2DM-derived complications increase the risk of 
morbidity and mortality [6]. 

The WHO estimates that obesity has dramati-
cally increased up to 1.9 billion people worldwide 
(https://www.who.int/news-room/fact-sheets/detail/
obesity-and-overweight). Obesity is not only the ex-
cessive level of adipose tissue – it is now recognized 
as a low-grade sustained inflammatory state that 
causes oxidative stress in different organs. Oxida-
tive stress develops as a result of an increase in the 

steady-state level of reactive oxygen species (ROS) 
which the antioxidant system cannot fully cope 
with [7]. Obesity-related inflammation and oxida-
tive stress lead to many disorders including cardio-
vascular disease, metabolic syndrome, T2DM, and 
non-alcoholic fatty liver disease [8, 9]. Obesity and 
T2DM are usually tightly related.

Nuclear factor erythroid 2 (NF-E2)-related fac-
tor 2 (Nrf2), a basic leucine zipper transcription fac-
tor, activates the expression of genes involved in an-
tioxidant defense and xenobiotic detoxification [7, 8]. 
Nrf2 molecules mainly reside in the cell cytoplasm 
by associating with kelch-like ECH-associated pro-
tein 1 (Keap1) and ubiquitin ligase cullin 3. Keap1 
is a substrate adaptor protein for cullin 3, which fa-
cilitates the ubiquitination of Nrf2. The interaction 
of Nrf2 with Keap1 leads to the proteasomal degra-
dation of Nrf2 [10]. Keap1 is a sensor for ROS: its 
oxidation by ROS prevents binding with Nrf2. This 
results in an increase in Nrf2 level, it translocates 
into the nucleus. As an activator, Nrf2 modulates 
the expression of a number of genes involved in glu-
cose and lipid metabolism [8]. In the mouse liver, 
the constitutive activation of Nrf2 via Keap1 knock-
down represses the expression of genes involved 
in gluconeogenesis and lipogenesis [11]. Moreover, 
this activation alleviates obesity, diabetes, and he-
patic steatosis in mice on a high fat diet (HFD) [12]. 

doi: https://doi.org/10.15407/ubj96.06.017
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HFD is being considered as a better strategy for the 
investigation, because it brings the development of 
the disease closer to common causes in humans (due 
to overeating and a sedentary lifestyle) and allows 
using functional foods for treatment [13].

The application of pharmacological Nrf2 ac-
tivators, particularly sulforaphane (SFN, 1-isothio-
cyanate-4-methylsulfinylbutane), has been actively 
studied. Broccoli is one of the best and most promi
sing SFN sources. Broccoli is a green vegetable 
rich in various bioactive phytochemicals [14, 15]. 
Sulforaphane is among the most attractive bioactive 
components of broccoli. SFN activates the transcrip-
tion factor Nrf2, which, as noted above, is an impor-
tant regulator of cellular redox homeostasis through 
its capacity to upregulate the expression of antioxi-
dant defense proteins [16-18].  Sulforaphane interacts 
with the cytoplasmic Keap1 protein and prevents it 
from binding to Nrf2. Therefore, Nrf2 translocates 
into the nucleus and leads to the transcriptional ac-
tivation of genes with the antioxidant response ele
ment in their promoters. The enhancement of the 
antioxidant network may inhibit the long-term com-
plications of obesity and diabetes making SFN an 
effective preventive and moderating compound for 
these diseases [18, 19].

This paper aims to analyze current data on the 
usage of broccoli sprouts and sulforaphane prepara-
tions for the treatment of obesity, T2DM and their 
comorbidities with the presentation of established 
molecular mechanisms of therapeutic effects.

Sulforaphane in broccoli

Cruciferous vegetables of the family Bras-
sicaceae (also called Cruciferae) such as broccoli, 
kale, cabbage, cauliflower, garden cress, bok choy, 
broccoli, Brussels sprouts, mustard plant and simi-
lar green leaf vegetables contain high amounts of 
glucosinolates. When the cells of these vegetables 
are breached, glucosinolates are released from the 
vacuole and are hydrolyzed by cytosolic myrosi-
nase to isothiocyanates and glucose. Sulforaphane 
is an isothiocyanate formed due to the hydrolysis 
of glucosinolate glucoraphanin and is produced as 
a protective compound to prevent herbivores, par-
ticularly insects, from eating the plant (http://rave.
ohiolink.edu/etdc/view?acc_num=osu1323373292), 
but it does not prevent eating of cruciferous vegies 
by slugs (VIL – personal observation). In both ro-
dents and humans, glucoraphanin is also hydrolyzed 
to sulforaphane by gut microbiota-derived myrosi-

nase, promoting SFN intestinal absorption [20]. The 
highest SFN levels were found in seeds and 3-day-
old broccoli sprouts [21]. This raises a great interest 
in using broccoli sprouts as a functional food to pre-
vent and attenuate certain diseases [22, 23]. 

Sulforaphane is a cytoprotective compound un-
der oxidative stress. This effect is provided by its co-
valent interaction with Keap1, preventing Nrf2 from 
binding with Keap1 followed by undergoing protea-
somal degradation. Consequently, Nrf2 enters the 
nucleus to induce the expression of Nrf2-regulated 
genes encoding antioxidant and other protective en-
zymes [24]. Specific cysteine residues of Keap1 are 
known to be modified by SFN due to which Keap1 
acts as sensors to ROS and electrophilic compounds 
enabling the cell to respond to oxidative and electro-
philic stress effectively through the activation of the 
Nrf2 pathway [25]. As Nrf2 activator, SFN has been 
reported to prevent oxidative damage [26, 27] and 
cardiovascular diseases [28]. Thus, SFN is conside
red as an indirect antioxidant due to the induction 
of Nrf2-dependent processes [29]. It has also been 
reported that SFN can affect epigenetic mechanisms 
through the inhibition of histone deacetylase and 
DNA methyltransferase [30]. The modulation of 
these mechanisms can influence the progression of 
various diseases including diabetes and obesity.

Due to the multiple health benefits, SFN itself 
and SFN-rich broccoli sprouts may be beneficial 
food supplements for the prevention and treatment 
of type 2 diabetes mellitus, obesity, and their comor-
bidities. This assertion is based on in vitro studies, 
animal models, and some clinical trials that are sum-
marized in the Table. Generalized schemes of sul-
foraphane (SFN) treatment with effects on glucose 
and lipid metabolism are demonstrated in the Figure.

Sulforaphane and type 2 diabetes mellitus

Ignorance or poor health control of people with 
T2DM can lead to the progression of various com-
plications. T2DM comorbidities affect different or-
gans and systems of the body, causing diseases [31]. 
Sulforaphane has received wide attention as a com-
pound that prevents T2DM and its complications via 
activation of Nrf2-dependent antioxidative pathways 
[32, 33]. 

Recently, the interplay between SFN and AMP-
activated protein kinase (AMPK) has been reported 
in different systems to prevent T2DM and its comor-
bidities [34, 35]. It was reported that SFN prevented 
T2DM-induced renal lipotoxicity during diabetic 
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kidney disease via involving AMPK. AMPK-me-
diated activation of lipid oxidation and Nrf2-driven 
antioxidative function was observed in wild-type 
mice, but not in AMPKα2 knockout (KO) mice, al-
though both groups were treated with SFN [36].

Nrf2 activation by SFN was demonstrated to be 
preventive against ferroptosis during diabetic cardio-
myopathy [37]. This activation inhibited lipid per-
oxidation in HFD wild type and AMPKα2-KO mice. 
The authors found that ferroptosis led to the develop-
ment of diabetic cardiomyopathy and suggested that 
this mechanism could be prevented by SFN treat-
ment via AMPK-dependent Nrf2 activation.

SFN can prevent angiotensin II-induced car-
diomyopathy via activation of Nrf2-mediated exo
genous antioxidant defenses. That up-regulation 
and activation of Nrf2 by SFN is achieved partially 
through the Akt/GSK-3β/Fyn pathway [38].

A study of T2DM in male Wistar rats fed an 
HFD found that SFN supplementation reduced li-
pid accumulation in obese diabetic mice [39]. These 
results indicate that SFN could also be a potential 
therapeutic compound for T2DM-derived dyslipi-
demia. 

Wang and colleagues used a T2DM mouse 
model to verify the protective function of SFN 

T a b l e. Protective effects of sulforaphane and broccoli sprouts in type 2 diabetes mellitus and obesity

T2DM Obesity
Pathway

(if specified) Effects Pathway
(if specified) Effects

AMPK ↓Renal lipotoxicity during 
diabetic kidney disease [36]
↓Ferroptosis during diabetic 
cardiomyopathy [37]
↓Body mass, 
↓hyperlipidemia [49]

AMPK ↓Body mass, ↓hyperlipidemia [49]
↑Glycerol release [74]
↑Browning of white adipose tissue, 
mitochondrial biogenesis [76]

Akt/GSK-3β/Fyn ↓Angiotensin II-induced 
cardiomyopathy [38]

Nrf2/PGC-1α 
and MAPK

↑Browning of white adipose tissue, 
mitochondrial biogenesis [76]

NF-kB ↓Serum insulin levels, 
↑insulin sensitivity [48] 

Akt/p70s6k1/
Bad and ERK

↑Apoptosis, adipocyte numbers 
were decreased [77]

Not specified PPAR ↓Atherosclerosis, ↑insulin 
sensitivity [71]

Not specified Lipid accumulation [39]
↓Inflammation, ↓oxidative 
damage, ↓apoptosis, ↓aortic 
fibrosis [40] ↑GSH/GSSG, 
↓blood pressure [51]
↓Mitochondrial ROS 
production, ↓protein 
glycation [52]
↓Renal fibrosis, 
↓inflammation, ↓oxidative 
stress markers during 
diabetic kidney disease [59]
↓TGF-b in hepatic cells [62]
↓Serum glucose and insulin 
levels, ↑Glutathione and 
superoxide dismutase [63]
↓Ceramide biosynthesis [64]

↓Adipogenesis, ↓lipid 
accumulation [74]
↓Expression of adipogenesis-
related proteins, ↑expression of 
fatty acid oxidation proteins [75]
↓Fat absorption [78]
↓Activity of lipogenic enzymes, 
↓expression of lipogenic 
enzyme genes [79,80]
↓Apolipoprotein B secretion [81]
↓Serum total cholesterol, 
↓LDL, ↓TAG, ↑HDL [82]
↓Serum TAG, total cholesterol, 
and LDL levels, TAG/HDL ratio 
[83] ↓Total cholesterol, ↓LDL [84]
↓Body mass gain, ↓fat mass 
accumulation, ↑insulin sensitivity, 
↑UCP1 level, ↑ browning in 
beige adipocytes [86]

M. V. Ivanochko, M. M. Bayliak, V. I. Lushchak
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Figure. Generalized scheme of Nrf2 inactivation/activation during physiological conditions and stress condi-
tions accompanied by ROS production or by sulforaphane (SFN) treatment with effects on glucose and lipid 
metabolism.  Nrf2 protein is constitutively synthesized. Under physiological conditions, in the cytoplasm, 
Nrf2 is targeted for ubiquitinization and degradation via interaction with Keap1. Keap1 forms link between 
Nrf2 and Cul3 ligase, which catalyzes ubiquitination of Nrf2 followed by its proteasomal degradation. Un-
der oxidative stress or SFN treatment, ROS and SFN modify specific cysteine residues in the Keap1 protein, 
making it unable to form complex with NrF2. Free Nrf2 is translocated into the nucleus, where it interacts 
with sMaf proteins and activates the expression of various genes controlled by the ARE. See the text for more 
details. Abbreviations: RBX1 – Ring-box 1 protein; Cul3 – Cullin-3 protein; Keap1 – Kelch like ECH associa
ted protein 1; Nrf2 – NF-E2-related factor 2 protein; Ub – Ubiquitin protein; ROS – reactive oxygen species; 
sMaf – small Maf (musculoaponeurotic fibrosarcoma) protein; ARE – antioxidant response element protein; 
SFN – sulforaphane; T2DM – type 2 diabetes mellitus

against diabetic aortic damage [40]. Animals were 
treated with SFN for four months. The treatment 
with SFN prevented the progression of aortic fibro-
sis, inflammation, oxidative damage, apoptosis, and 
proliferation in T2DM mice. 

Axelsson and colleagues found that SFN had 
no effects on insulin signaling and mitochondrial 
oxygen consumption in hepatoma cells during dia-
betic conditions [41]. For the study, the authors used 
broccoli sprout extract (BSE) in the form of a dried 
powder of an aqueous extract of broccoli sprouts. 
The powder contained high concentrations of the 
SFN precursor glucoraphanin. That study reported a 
reduction of glucose production and an improvement 
of glucose tolerance mediated by Nrf2 in mouse 
hepatocytes. These data suggest that BSE had a di-

rect effect on gluconeogenesis rather than hepatic in-
sulin sensitivity. Treatment of T2DM patients with 
SFN-containing broccoli sprout extracts showed that 
safety doses of BSE corresponding to 50-400 mmol 
SFN daily were required to achieve clinical effects 
[42-45]. 

Insulin resistance (IR) is the impaired ability of 
cells to increase glucose uptake due to insulin stimu-
lation. In addition, IR is a characteristic feature of 
T2DM and a risk factor for metabolic and cardio-
vascular complications [46]. It was suggested that 
IR of adipocytes themself could be the main reason 
for the disturbance of carbohydrate metabolism, thus 
linking T2DM and obesity [47]. In T2DM patients, 
consumption of broccoli sprouts with a high content 
of sulforaphane decreased serum insulin levels. The 
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effect of SFN on IR may be related to the nuclear 
factor kappa-B (NF-kB) inflammatory pathway. This 
pathway has been known to be a key mediator in the 
development of IR and pathogenesis of T2DM and 
its complications. Inhibition of the NF-kB pathway 
by SFN increased insulin sensitivity [48]. 

Body weight gain and hyperlipidemia were sup-
pressed under SFN treatment in HFD-fed mice [49]. 
The addition of SFN prevented HFD-induced oxida-
tive stress by activating the AMPK/Nrf2 signaling 
pathway. Besides, the phosphorylation of AMPK 
was significantly decreased in the liver of HFD 
mice, and SFN treatment ameliorated the reduction 
of AMPK phosphorylation. Compared with the HFD 
group, the expression of three AMPK downstream 
genes, Cpt1, Acc, and Fans, also increased in the 
HFD within SFN group [49].

Hypertension in T2DM patients is a risk factor 
for the development of cardiovascular disease [50]. 
Supplementation of hypertensive rats with broccoli 
sprouts increased the ratio reduced/oxidized glu-
tathione (GSH/GSSG) and improved endothelial-
dependent relaxation of the aorta, resulting in a 
significant decrease in blood pressure [51]. This sug-
gests that broccoli sprouts may affect cardiovascu-
lar diseases by decreasing the intensity of oxidative 
stress. 

It is well known that inflammation can induce 
vascular endothelial damage. Sulforaphane has been 
found to inhibit this process via modulation of in-
flammatory signaling pathways mediated by p38 
mitogen-activated protein kinases and c-Jun N-ter-
minal kinases [52]. Activation of Nrf2 and upregula-
tion of the expression of target genes were observed 
together with the suppression of vascular cell adhe-
sion protein 1 under treatment with SFN [53,54].

Diabetic kidney disease is one of the main 
causes of human death from T2DM-derived com-
plications [55]. Overproduction of ROS induced by 
hyperglycemia has been identified as a risk factor 
for the development of the disease [56]. Activation of 
Nrf2 may have therapeutic potential for preventing 
diabetic kidney disease, as suggested in several 
studies [57, 58]. Cui and colleagues tested this hy-
pothesis by treatment of a diabetic mouse model 
with SFN 0.5 mg/kg body mass for 3 months. Such 
treatment prevented diabetes-induced renal fibrosis, 
inflammation, oxidative stress, which are markers 
of diabetic kidney disease, via upregulation of renal 
Nrf2 genes by SFN [59]. 

Fibrosis development in the liver and kidney 
can result from a diabetes-induced imbalance be-
tween the production and degradation of extracel-
lular matrix structures, including collagen and fi-
bronectin [60, 61]. Transforming growth factor beta 
(TGF-β) is a main profibrotic cytokine that con-
tributes to the development of liver fibrosis. TGF-β 
could be inhibited by sulforaphane-induced activa-
tion of Nrf2 in hepatic cells [62]. In renal tubular 
cells, SFN prevented the profibrotic effects of hyper-
glycemia [59].

Oral administration of SFN exhibited protec-
tive effects against high-fat diet- or streptozotocin-
induced type 2 diabetes in mouse models. These 
conclusions were drawn based on the observed de-
crease in fasting serum glucose levels and increase 
in serum insulin levels [63]. In this study, SFN in-
creased the activities of glutathione peroxidase and 
superoxide dismutase in the liver of type 2 diabetic 
mice, suggesting that SFN improves the antioxidant 
capacity in the liver of these mice [63].

Treatment with SFN shows promise for recove
ring hepatic glucose homeostasis and improving in-
sulin sensitivity. This statement was supported by 
both in vitro and in vivo studies that demonstrated 
the blocking ceramide biosynthesis through the 
downregulation of serine palmitoyltransferase long 
chain base subunit 3 gene expression [64].

Sulforaphane was shown to inhibit the NF-κB 
pathway, a key regulator of all inflammation re-
sponses, in the sciatic nerve of diabetic animals [65]. 
The molecular mechanism of NF-κB inhibition by 
SFN remains unspecified and requires further in-
vestigation. Direct SFN action on NF-κB signaling 
or indirect action through Nrf2/HO-1 upregulation 
were suggested as possible answers to that question 
[65, 66].

Reduction of c-Jun N-terminal kinase phospho-
rylation levels, inhibition of NF-κB and AP-1 signa
ling, and a decrease in levels of the inflammatory 
mediators (iNOS, COX-2, NO, and PGE2) and pro-
inflammatory  cytokines (TNF-α, IL-6, and IL-1β) 
were observed under SFN treatment [67].

In addition, the anti-inflammatory effects of 
SFN were demonstrated via modulation of the PI3K/
AKT/GSK3β/Nrf-2 and NF-κB pathways in T-cells. 
In vitro and in vivo studies demonstrated suppression 
of T-cell mediated immune responses by inhibiting 
the GSK3β pathway, NF-κB suppression, and Nrf2 
activation by SFN [68].

M. V. Ivanochko, M. M. Bayliak, V. I. Lushchak
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Sulforaphane and obesity

Many Nrf2 activators have been used to in-
vestigate the effects of Nrf2 on obesity and its co-
morbidities. Sulforaphane provides pharmacological 
Nrf2 activation, subsequently affecting adipocyte 
differentiation and preventing adipogenesis and lipid 
accumulation [69]. Nrf2 activation directly targets 
the expression of lipogenic genes such as peroxisome 
proliferator-activated receptor gamma (PPARG) [70]. 
Recent studies suggest that activation of PPARG 
might decrease atherosclerosis progression and in-
crease insulin sensitivity [71]. 

AMPK is a regulator of energy and lipid me-
tabolism [72]. Inactivation of AMPK stimulates lipid 
biosynthesis while activation of AMPK via phospho-
rylation inhibits lipogenesis by the inactivation of 
key metabolic enzymes involved in fatty acid and 
cholesterol synthesis, such as acetyl-CoA carboxy-
lase (ACC) and hydroxy-3-methylglutaryl coenzyme 
A reductase (HMGCR) [73].

Lee and colleagues suggested that SFN induces 
lipolysis [74]. They determined that glycerol release 
occurred in a dose-dependent manner to SFN treat-
ment and suppression of AMPK and hormone-sen-
sitive lipase.

The anti-obesogenic effect of broccoli sprout 
powder, mustard (Sinapis alba L.) seed powder was 
demonstrated through inhibition of adipocyte dif-
ferentiation and reduction of their accumulation in 
vitro [75]. Levels of adipogenesis-related proteins 
(aP2, PPAR-γ, SREBP-1C, FAS, and C/EBP-α) were 
reduced, while the level of carnitine palmitoyltrans-
ferase, fatty acid oxidation enzyme, was increased 
[75].

Liu and colleagues investigated the browning 
of white fat tissue (WAT) and enhancing mitochon-
drial biogenesis [76]. An in vitro study demonstrated 
the association between the browning effect of SFN, 
increased mitochondrial biogenesis, and the Nrf2/
PGC-1α and MAPK pathways. MAPK pathway was 
upregulated due to SFN treatment and the browning 
of WAT was increased at the late period of adipogen-
esis. They connected their findings with the upregu-
lation of the AMPK and Nrf2 signaling pathways 
[76].

Fat accumulation could be prevented by the in-
duction of apoptosis, thus reducing adipocyte num-
bers [77]. It was reported that SFN induced apop
tosis in 3T3-L1 adipocytes. The authors suggested 
that the investigated process was accomplished via 

the mitochondria-induced apoptosis mechanism 
through the down- or up-regulation of Akt/p70s6k1/
Bad and ERK pathways [77].

An in vitro study showed that isothiocyanates 
from broccoli bind with bile acids and reduce fat 
absorption [78]. Broccoli sprout extract inhibited 
the activity of lipoprotein lipase, diacylglycerol 
acyltransferases, fatty acid synthase, and acyl-CoA-
cholesterol acyltransferase, which are key lipogenic 
enzymes, and also reduced the expression of their re-
lated genes [79, 80]. Indole glucosinolates can reduce 
apolipoprotein B secretion, a primary apolipoprotein 
of low-density lipoproteins (LDL) [81]. 

Decreasing levels of triacylglycerides (TAG) 
is the main objective of lipid-lowering therapies 
[80]. Administration of an ethanol extract of broc-
coli sprouts in two doses of 200 and 400 g/kg for 
4 weeks in HFD-fed rats decreased levels of serum 
total cholesterol, LDL, TAG, and increased level of 
high-density lipoproteins (HDL) [82]. 

Trials with broccoli sprout powder in T2DM 
patients for four weeks resulted in an 18.7% decrease 
in serum TAG levels [83]. A nonsignificant decrease 
in serum levels of total cholesterol and LDL was also 
observed in that study. An atherogenic index of plas-
ma (defined as the logarithm of the TAG/HDL ratio) 
is considered a direct determination of the lipopro-
tein particle size and the risk of atherosclerosis. A 
significant 52% reduction in this ratio was observed 
in patients treated with broccoli sprout powder [83]. 

Another trial was carried out with the con-
sumption of fresh broccoli sprouts. One-week treat-
ment was accompanied by a reduction in both to-
tal cholesterol and LDL in healthy subjects [84]. In 
contrast, ingestion of 10 g/day broccoli sprouts pow-
der during 4 weeks of intervention in patients with 
hypertension had no effects on levels of LDL, total 
cholesterol, and HDL [85].

Nagata and colleagues showed that oral ad-
ministration of the SFN precursor glucoraphanin 
mitigated body mass gain and attenuated fat mass 
accumulation in HFD-fed mice without affecting 
food intake [86]. Glucoraphanin supplementation 
improved systemic glucose tolerance and insulin 
sensitivity. Glucoraphanin acted against adiposity 
and hepatic steatosis by promoting energy utiliza-
tion and preventing lipogenesis and oxidative stress 
in the liver. It increased levels of uncoupling pro-
tein 1 (UCP1) in white adipose depots and enhanced 
browning in beige adipocytes [86]. 
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Conclusion and perspectives

Broccoli sprouts and their preparations hold 
promise as beneficial food supplements for the pre-
vention and treatment of type 2 diabetes mellitus, 
obesity, and comorbidities. Evidence supporting 
these benefits is derived from in vitro studies, animal 
models, and clinical trials. Activation of Nrf2 by sul-
foraphane, a key component of broccoli sprouts, has 
been shown to reduce body mass without decreas-
ing food intake. Positive effects include improved 
energy utilization, enhanced insulin sensitivity, and 
the prevention of lipogenesis and oxidative stress de-
velopment. Despite these promising findings, several 
key aspects remain to be clarified. Most studies have 
been limited to a dose-response analysis, pharma-
codynamics, and sulforaphane concentration measu
rements. Additionally, the duration of feeding with 
broccoli supplements is a critical factor that requires 
further investigation. While most studies have limi
ted treatment duration to four weeks, which may re-
sult in the absence of effects, more prolonged treat-
ment may yield more definitive results. 

Further research should focus on determining 
the optimal doses and durations of broccoli sup-
plementation. Extended studies with various doses 
and longer treatment periods are needed to provide 
more comprehensive information about the therapeu-
tic effects of broccoli sprouts. Understanding these 
parameters will help to maximize the benefits and 
minimize the limitations currently observed in broc-
coli sprout supplementation for metabolic disorders. 
Moreover, further studies are necessary to uncover 
other potential benefits and key mechanisms of ac-
tion of broccoli components, such as glucosinolates, 
polyphenols, vitamins, etc. A deeper understanding 
of the molecular pathways involved, including the 
role of sulforaphane and its interaction with other 
cellular mechanisms, will provide insights into how 
broccoli sprouts can be more effectively used in the 
prevention and treatment of metabolic disorders.
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Потенціал ізотіоціанату 
сульфорафану з хрестоцвітих 
рослин у боротьбі з 
ожирінням та цукровим 
діабетом 2 типу: залучення 
регуляторного шляху NRF2 
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Метою цього огляду було проаналізувати 
поточні дані щодо застосування ізотіоціанату 
сульфорафану, знайденого в броколі та інших 
хрестоцвітих рослинах, для лікування цукро-
вого діабету 2 типу, ожиріння та їх супутніх 
захворювань із представленням встановлених 
молекулярних, особливо залежних від NF‑E2-
пов’язаного фактора-2 (Nrf2), і сигнальних 
механізмів терапевтичних ефектів.

К л ю ч о в і  с л о в а: проростки броколі, 
Nrf2, дієтотерапія, ожиріння, профілактика, 
сульфорафан, цукровий діабет 2 типу.
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