Ukr.Biochem.J. 2014; Том 86, №4, липень-серпень, c. 79-89

doi: http://dx.doi.org/10.15407/ubj86.04.079

Вплив гіпоксії на експресію генів CCN2, PLAU, PLAUR, SLURP1, PLAT та ITGB1 у клітинах гліоми лінії U87 з нокдауном гена ERN1

О. Г. Мінченко1, А. П. Харькова1, К. І. Кубайчук1,
Д. O. Мінченко1,2, Н. А. Глущак1, O. В. Ковалевська1

1Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
e-mail: ominchenko@yahoo.com;
2Національний медичний університет ім. О. О. Богомольця, Київ, Україна

Стрес ендоплазматичного ретикулума є посиленим у клітинах злоякісних пухлин. Він є необхідним фактором росту пухлин. Вивчали експресію генів, що кодують важливі для проліферації клітин фактори, у клітинах гліоми лінії U87 з нокдауном гена ERN1 за умов гіпоксії. Встановлено, що нокдаун гена ERN1 призводить до збільшення рівня експресії мРНК PLAT (tissue plasminogen activator), CCN2 (CCN family member 2) та ITGB1 (integrin β-1), а також до зниження рівня експресії мРНК PLAU (urokinase plasminogen activator), PLAUR (plasminogen activator, urokinase receptor) та SLURP1 (secreted LY6/PLAUR domain containing 1). Було показано, що рівень експресії мРНК ITGB1 за умов гіпоксії істотно не змінюється в контрольних клітинах гліоми, але збільшується рівень експресії мРНК CCN2, PLAUR, SLURP1 та PLAT і знижується рівень експресії лише мРНК PLAU. У той же час у клітинах гліоми з нокдауном гена ERN1 рівень експресії мРНК PLAU, PLAUR та SLURP1 знижується за гіпоксії, але збільшується рівень експресії мРНК PLAT та ITGB1 за цих експериментальних умов. Таким чином, одержані нами дані свідчать про те, що рівень експресії всіх досліджених генів змінюється за блокади ERN1, а також за гіпоксії, і що ефект гіпоксії переважно залежить від функції сигнального ензиму ERN1.

Ключові слова: , , , , , , , , ,


Посилання:

  1. Zhang K., Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. J. Biol. Chem. 2004;279(25): 25935–25938.
  2. Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 2007 Nov 15;67(22):10631-4. Review. PubMed, CrossRef
  3. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N, Harding H, Novoa I, Varia M, Raleigh J, Scheuner D, Kaufman RJ, Bell J, Ron D, Wouters BG, Koumenis C. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 2005 Oct 5;24(19):3470-81. PubMed, PubMedCentralCrossRef
  4. Fels DR, Koumenis C. The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther. 2006 Jul;5(7):723-8. Review. PubMed, CrossRef
  5. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, Stroud RM, Walter P. The unfolded protein response signals through high-order assembly of Ire1. Nature. 2009 Feb 5;457(7230):687-93.  PubMed, PubMedCentral, CrossRef
  6. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H, Mori K, Glimcher LH, Denko NC, Giaccia AJ, Le QT, Koong AC. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 2004 Sep 1;64(17):5943-7. PubMed, CrossRef
  7. Johnson AB, Denko N, Barton MC. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res. 2008 Apr 2;640(1-2):174-9.  PubMed, PubMedCentral, CrossRef
  8. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008 Sep;8(9):705-13. PubMed, CrossRef
  9. Aragón T, van Anken E, Pincus D, Serafimova IM, Korennykh AV, Rubio CA, Walter P. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature. 2009 Feb 5;457(7230):736-40. PubMed, PubMedCentral, CrossRef
  10. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell. 2007 Jul 6;27(1):53-66. PubMed, CrossRef
  11. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol. 2009 Aug 10;186(3):323-31.  PubMed, PubMedCentral, CrossRef
  12. Lee J, Sun C, Zhou Y, Lee J, Gokalp D, Herrema H, Park SW, Davis RJ, Ozcan U. p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat Med. 2011 Sep 4;17(10):1251-60. PubMed, PubMedCentral, CrossRef
  13. Park SW, Zhou Y, Lee J, Lu A, Sun C, Chung J, Ueki K, Ozcan U. The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Nat Med. 2010 Apr;16(4):429-37. PubMed, PubMedCentral, CrossRef
  14. Zhou Y, Lee J, Reno CM, Sun C, Park SW, Chung J, Lee J, Fisher SJ, White MF, Biddinger SB, Ozcan U. Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. Nat Med. 2011 Mar;17(3):356-65.  PubMed, PubMedCentral, CrossRef
  15. Drogat B, Auguste P, Nguyen DT, Bouche­careilh M, Pineau R, Nalbantoglu J, Kauf­man RJ, Chevet E, Bikfalvi A, Moenner M. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res. 2007 Jul;67(14):6700–6707.  PubMed, CrossRef
  16. Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. A shift from an angiogenic to invasive phenotype induced in malignant glioma by inhibition of the unfolded protein response sensor IRE1. Proc. Natl. Acad. Sci. USA. 2010;107(35):1555–15558.
  17. Hakelius M, Koskela A, Ivarsson M, Gren­man R, Rubin K, Gerdin B, Nowinski D. Keratinocytes and head and neck squamous cell carcinoma cells regulate urokinase-type plasminogen activator and plasminogen activator inhibitor-1 in fibroblasts. Anticancer Res. 2013 Aug;33(8):3113-8.  PubMed
  18. Grismayer B, Sato S, Kopitz C, Ries C, Soelch S, Schmitt M, Baretton G, Krüger A, Luther T, Kotzsch M, Magdolen V. Over­expression of the urokinase receptor splice variant uPAR-del4. 5 in breast cancer cells affects cell adhesion and invasion in a dose-dependent manner and modulates transcription of tumor-associated genes. Biol. Chem. 2012;393(12):1449–1455.   CrossRef
  19. Larusch GA, Merkulova A, Mahdi F, Shariat-Madar Z, Sitrin RG, Cines DB, Schmaier AH. Domain 2 of uPAR regulates single-chain urokinase-mediated angiogenesis through β1-integrin and VEGFR2. Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H305-20. PubMed, PubMedCentral, CrossRef
  20. Reymond N, Im JH, Garg R, Vega FM, Borda d’Agua B, Riou P, Cox S, Valderrama F, Muschel RJ, Ridley AJ. Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. J Cell Biol. 2012 Nov 12;199(4):653-68. PubMed, PubMedCentral, CrossRef
  21. Chernyavsky AI, Arredondo J, Galitovskiy V, Qian J, Grando SA. Upregulation of nuclear factor-kappaB expression by SLURP-1 is mediated by alpha7-nicotinic acetylcholine receptor and involves both ionic events and activation of protein kinases. Am J Physiol Cell Physiol. 2010 Nov;299(5):C903-11.  PubMed, PubMedCentral, CrossRef
  22. Yu X, Zhen Y, Yang H, Wang H, Zhou Y, Wang E, Marincola FM, Mai C, Chen Y, Wei H, Song Y, Lyu X, Ye Y, Cai L, Wu Q, Zhao M, Hua S, Fu Q, Zhang Y, Yao K, Liu Z, Li X, Fang W. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma. Cell Death Dis. 2013 May 16;4:e634. PubMed, PubMedCentral, CrossRef
  23. Lee S, Qiao J, Paul P, Chung DH. Integrin β1 is critical for gastrin-releasing peptide receptor-mediated neuroblastoma cell migration and invasion. Surgery. 2013 Aug;154(2):369-75. PubMed, PubMedCentral, CrossRef
  24. Minchenko DО, Kubajchuk KІ, Ratushna OO, Komisarenko SV, Minchenko OH. The vascular endothelial growth factor genes expression in glioma U87 cells is dependent from ERN1 signaling enzyme function.  Adv Biol Chem. 2012;2(2):198–206.  CrossRef
  25. Minchenko DO, Karbovskyi LL, Dani­lovskyi SV, Moenner M, Minchenko O H. Effect of hypoxia and glutamine or glucose deprivation on the expression of retinoblastoma and retinoblastoma-related genes in ERN1 knockdown glioma U87 cell line. Am J Mol Biol. 2012;2(1):21–31.  CrossRef
  26.  Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 2006 Sep;38(9):1060-5. PubMed, PubMedCentral, CrossRef
  27. Inoki I., Shiomi T., Hashimoto G., Enomoto H., Nakamura H., Makino K., Ikeda E., Takata S., Kobayashi K., Okada Y. Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J. 2002 Feb;16(2):219-21. PubMed, CrossRef
  28. Kenagy RD, Min SK, Mulvihill E, Clowes AW. A link between smooth muscle cell death and extracellular matrix degradation during vascular atrophy. J Vasc Surg. 2011 Jul;54(1):182-191.e24.  PubMed, PubMedCentral, CrossRef
  29. Simard B, Bouamrani A, Jourdes P, Pernod G, Dimitriadou V, Berger F. Induction of the fibrinolytic system by cartilage extract mediates its antiangiogenic effect in mouse glioma. Microvasc Res. 2011 Jul;82(1):6-17.  PubMed, CrossRef
  30. Kubaichuk KI, Minchenko DO, Danilovskyi SV, Kuznetsova AY, Jasim AR, Minchenko OH. Hypoxic regulation of the expression of anti-angiogenic genes in U87 glioma cells with ERN1 signaling enzyme loss of function. Studia Biologica. 2012;6(3):15-28.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.