Ukr.Biochem.J. 2015; Том 87, № 5, вересень-жовтень, c. 93-102

doi: http://dx.doi.org/10.15407/ubj87.05.093

Прояви окисного стресу та молекулярних ушкоджень у раковій тканині яйників

Г. І. Фальфушинська1,2, Л. Л. Гнатишина1,2,
Г. В. Денега1, О. Й. Осадчук1, О. Б. Столяр1

1Тернопільський національний педагогічний університет імені Володимира Гнатюка, Україна;
e-mail: halynka.f@gmail.com;
2ДВНЗ «Тернопільський державний медичний університет ім. І. Я Горбачевського», Україна

Показники окисного стресу є визнаними молекулярними маркерами та прогностичними критеріями злоякісного переродження тканини, проте їх виявлення залежить від типу пухлин і стадій їх розвитку. Метою дослідження було з’ясувати взаємозв’язок між характеристиками системи окисного стресу, у тому числі й метал-асоційованими, та проявами цитотоксичності в онкотрансформованій тканині яйників людини. Вперше встановлено вищий рівень Mn-супероксиддисмутазної активності цитозолю (на 630%) та протеїну металотіонеїну (МТ, на 100%) у трансформованій тканині порівняно з неураженою тканиною яйників. У пухлинній тканині значно вищий рівень утворення оксирадикалів (на 332%), нижча активність каталази (на 49%) та нижчий вміст відновленого глутатіону (на 46%) та його редокс індексу (0,84 проти 0,89 у контролі). За відносно стабільного вмісту цинку, купруму та кадмію у складі МТ, вміст цинку та, особливо, купруму у недепонованій формі істотно нижчий у трансформованій тканині, а вміст кадмію вищий. Дискримінантний аналіз всіх досліджуваних показників виявив, що підвищений вміст продуктів окисного ураження протеїнів, ліпідів, фрагментованої ДНК та активність катепсину Д, особливо його вільної форми (вище на 235%) належить до головних характеристичних ознак онкотрансформованої тканини яйників.

Ключові слова: , , , , , , ,


Посилання:

  1. Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. SEER Cancer Statistics Review, 1975-2010, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2010/, based on November 2012 SEER data submission, posted to the SEER web site (accessed, April 2013).
  2. Buys SS, Partridge E, Black A, Johnson CC, Lamerato L, Isaacs C, Reding DJ, Greenlee RT, Yokochi LA, Kessel B, Crawford ED, Church TR, Andriole GL, Weissfeld JL, Fouad MN, Chia D, O’Brien B, Ragard LR, Clapp JD, Rathmell JM, Riley TL, Hartge P, Pinsky PF, Zhu CS, Izmirlian G, Kramer BS, Miller AB, Xu JL, Prorok PC, Gohagan JK, Berg CD; PLCO Project Team. Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA. 2011 Jun 8;305(22):2295-303. PubMed, CrossRef
  3. Galtier-Dereure F, Capony F, Maudelonde T, Rochefort H. Estradiol stimulates cell growth and secretion of procathepsin D and a 120-kilodalton protein in the human ovarian cancer cell line BG-1. J Clin Endocrinol Metab. 1992 Dec;75(6):1497-502. PubMed, CrossRef
  4. Lösch A, Schindl M, Kohlberger P, Lahodny J, Breitenecker G, Horvat R, Birner P. Cathepsin D in ovarian cancer: prognostic value and correlation with p53 expression and microvessel density. Gynecol Oncol. 2004 Feb;92(2):545-52. PubMed, CrossRef
  5. Kågedal K, Johansson U, Ollinger K. The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J. 2001 Jul;15(9):1592-4. PubMed, CrossRef
  6. Mahalingaiah PK, Singh KP. Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One. 2014 Jan 28;9(1):e87371. eCollection 2014. PubMed, PubMedCentral, CrossRef
  7. Martinez-Outschoorn UE, Balliet R, Lin Z, Whitaker-Menezes D, Birbe RC, Bombonati A, Pavlides S, Lamb R, Sneddon S, Howell A, Sotgia F, Lisanti MP. BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: implications for breast cancer prevention with antioxidant therapies. Cell Cycle. 2012 Dec 1;11(23):4402-13. PubMed, PubMedCentral, CrossRef
  8. Sung SY, Kubo H, Shigemura K, Arnold RS, Logani S, Wang R, Konaka H, Nakagawa M, Mousses S, Amin M, Anderson C, Johnstone P, Petros JA, Marshall FF, Zhau HE, Chung LW. Oxidative stress induces ADAM9 protein expression in human prostate cancer cells. Cancer Res. 2006 Oct 1;66(19):9519-26. PubMed, CrossRef
  9. Baharvand M, Manifar S, Akkafan R, Mortazavi H, Sabour S. Serum levels of ferritin, copper, and zinc in patients with oral cancer. Biomed J. 2014 Sep-Oct;37(5):331-6. PubMed, CrossRef
  10. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276-87. PubMed, CrossRef
  11. Floreani M, Napoli E, Palatini P. Role of antioxidant defences in the species-specific response of isolated atria to menadione. Comp Biochem Physiol C Toxicol Pharmacol. 2002 Jun;132(2):143-51. PubMed, CrossRef
  12. Aebi H. Catalase. In: Methods of Enzymatic Analysis. Ed.: H. U. Bergmeyer. London: Academic Press, 1974. P. 673-677.
  13. Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548-55. PubMed, CrossRef
  14.  Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207-12. PubMed, CrossRef
  15.  Lushchak VI, Bahniukova TV, Lushchak OV. Indices of oxidative stress. 1. TBA-reactive substances and carbonylproteins. Ukr Biokhim Zhurn. 2004 May-Jun;76(3):136-41. Ukrainian. PubMed
  16. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979 Jun;95(2):351-8. PubMed, CrossRef
  17. Viarengo A, Burlando B, Cavaletto M, Marchi B, Ponzano E, Blasco J. Role of metallothionein against oxidative stress in the mussel Mytilus galloprovincialis. Am J Physiol. 1999 Dec;277(6 Pt 2):R1612-9. PubMed
  18. Viarengo A, Ponzano E, Dondero F, Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Environ Res. 1997 Jul;44(1):69-84. CrossRef
  19. Falfushynska H, Gnatyshyna L, Turta O, Stoliar O, Mitina N, Zaichenko A, Stoika R. Responses of hepatic metallothioneins and apoptotic activity in Carassius auratus gibelio witness a release of cobalt and zinc from waterborne nanoscale composites. Comp Biochem Physiol C Toxicol Pharmacol. 2014 Mar;160:66-74. PubMed, CrossRef
  20. Nielson KB, Winge DR. Independence of the domains of metallothionein in metal binding. J Biol Chem. 1985 Jul 25;260(15):8698-701. PubMed
  21. Olive PL. DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells. Environ Mol Mutagen. 1988;11(4):487-95. PubMed, CrossRef
  22. Dingle JT, Barrett AJ, Weston PD. Cathepsin D. Characteristics of immunoinhibition and the confirmation of a role in cartilage breakdown. Biochem J. 1971 Jun;123(1):1-13. PubMed, PubMedCentral, CrossRef
  23. Falfushynska H, Gnatyshyna L, Yurchak I, Sokolova I, Stoliar O. The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants. Aquat Toxicol. 2015 May;162:82-93. PubMedCrossRef
  24. Hamilton SJ, Mehrle PM, Jones JR. Cadmium-saturation technique for measuring metallothionein in brook trout. Trans Am Fish Soc. 1987 Jul;116(4):541-550. CrossRef
  25. Lushchak VI. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol. 2011 Mar;153(2):175-90. Review. PubMed, CrossRef
  26. de Vries HE, Witte M, Hondius D, Rozemuller AJ, Drukarch B, Hoozemans J, van Horssen J. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med. 2008 Nov 15;45(10):1375-83. Review. PubMed, CrossRef
  27. Dhar SK, St Clair DK. Manganese superoxide dismutase regulation and cancer. Free Radic Biol Med. 2012 Jun 1-15;52(11-12):2209-22. Review.
    PubMed, CrossRef
  28. Weydert CJ, Waugh TA, Ritchie JM, Iyer KS, Smith JL, Li L, Spitz DR, Oberley LW. Overexpression of manganese or copper-zinc superoxide dismutase inhibits breast cancer growth. Free Radic Biol Med. 2006 Jul 15;41(2):226-37. PubMed, CrossRef
  29. Maret W. Redox biochemistry of mammalian metallothioneins. J Biol Inorg Chem. 2011 Oct;16(7):1079-86. Review. PubMed, CrossRef
  30. Raudenska M, Gumulec J, Podlaha O, Sztalmachova M, Babula P, Eckschlager T, Adam V, Kizek R, Masarik M. Metallothionein polymorphisms in pathological processes. Metallomics. 2014 Jan;6(1):55-68. Review. PubMed, CrossRef
  31. Surowiak P, Materna V, Maciejczyk A, Pudełko M, Markwitz E, Spaczyński M, Dietel M, Zabel M, Lage H. Nuclear metallothionein expression correlates with cisplatin resistance of ovarian cancer cells and poor clinical outcome. Virchows Arch. 2007 Mar;450(3):279-85. PubMed, CrossRef
  32.   Falfushynska HI, Gnatyshyna LL, Osadchuk OY, Shidlovsky VO, Stoliar OB. Trace elements storage and metallothioneins function peculiarities in human thyroid gland under transformation. Ukr Biochem J. 2014 May-Jun;86(3):107-13. (In Ukrainian). PubMed, CrossRef
  33. Falfushynska H. I., Gnatyshyna L. L., Osadchuk D. V., Shidlovsky V. O., Stoliar O. B. Metal-binding function and antioxidant properties in human thyroid gland under iodine deficient nodular colloidal goiter. Ukr Biokhim Zhurn. 2011 Nov-Dec;83(6):92-7.(In Ukrainian). PubMed
  34. Bay BH, Jin R, Huang J, Tan PH. Metallothionein as a prognostic biomarker in breast cancer. Exp Biol Med (Maywood). 2006 Oct;231(9):1516-21. PubMed
  35. Eid H, Géczi L, Bodrogi I, Institoris E, Bak M. Do metallothioneins affect the response to treatment in testis cancers? J Cancer Res Clin Oncol. 1998 Jan;124(1):31-6. PubMed, CrossRef
  36.   Somji S, Garrett SH, Sens MA, Gurel V, Sens DA. Expression of metallothionein isoform 3 (mt-3) determines the choice between apoptotic or necrotic cell death in Cd12-exposed human proximal tubule cells. Toxicol Sci. 2004;80(2):358-366. CrossRef
  37.  Burhans WC, Heintz NH. The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med. 2009 Nov 1;47(9):1282-93. Review. PubMed, CrossRef
  38. Okuno S, Sato H, Kuriyama-Matsumura K, Tamba M, Wang H, Sohda S, Hamada H, Yoshikawa H, Kondo T, Bannai S. Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. Br J Cancer. 2003 Mar 24;88(6):951-6. PubMed, PubMedCentral, CrossRef
  39. Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM. Glutathione levels in human tumors. Biomarkers. 2012 Dec;17(8):671-91. Review. PubMed, PubMedCentral, CrossRef
  40. Goodman VL, Brewer GJ, Merajver SD. Copper deficiency as an anti-cancer strategy. Endocr Relat Cancer. 2004 Jun;11(2):255-63. Review. PubMed, CrossRef
  41.   Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006 Mar 10;160(1):1-40. Review. PubMed, CrossRef
  42. Nagata C, Nagao Y, Nakamura K, Wada K, Tamai Y, Tsuji M, Yamamoto S, Kashiki Y. Cadmium exposure and the risk of breast cancer in Japanese women. Breast Cancer Res Treat. 2013 Feb;138(1):235-9. PubMed, CrossRef
  43. Yu C, Huang X, Xu Y, Li H, Su J, Zhong J, Kang J, Liu Y, Sun L. Lysosome dysfunction enhances oxidative stress-induced apoptosis through ubiquitinated protein accumulation in Hela cells. Anat Rec (Hoboken). 2013 Jan;296(1):31-9. PubMed, CrossRef
  44. Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, Prébois C, Rochefort H, Vignon F. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett. 2006 Jun 18;237(2):167-79. Review. PubMed, CrossRef
  45. Garcia M, Platet N, Liaudet E, Laurent V, Derocq D, Brouillet JP, Rochefort H. Biological and clinical significance of cathepsin D in breast cancer metastasis. Stem Cells. 1996 Nov;14(6):642-50. Review. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.