Ukr.Biochem.J. 2015; Том 87, № 5, вересень-жовтень, c. 38-45

doi: http://dx.doi.org/10.15407/ubj87.05.038

Вплив хлориду алюмінію на Са(2+),Mg(2+)-АТPазну активність та динамічні параметри скорочення скелетних м’язів

Д. М. Ноздренко1, О. М. Абрамчук2, В. М. Сорока1, М. С. Мірошниченко1

1Київський національний університет імені Тараса Шевченка, ННЦ «Інститут біології», Україна;
2Східноєвропейський національний університет імені Лесі Українки, Луцьк, Україна;
e-mail: ddd@univ.kiev.ua

Проведено ензиматичні та тензометричні дослідження функціонування волокон скелетного м’яза tibialis anterior жаби Rana temporaria за дії хлориду алюмінію. Було показано, що розчини AlCl3 в концентраціях нижчих 10-4 моль/л не впливали на динамічні параметри скелетно-м’язових препаратів, за збільшення концентрації до 10-2 моль/л відбувалось повне пригнічення процесів скорочення м’яза. Встановлено лінійне зниження Са2+,Mg2+-АТPазної активності саркоплазматичного ретикулума за дії всіх досліджуваних концентрацій AlCl3. Показано, що зменшення динамічних параметрів скорочення і зниження Са2+,Mg2+-АТPазної активності саркоплазматичного ретикулума було мінімальним впродовж дотенанічного періоду скорочення. Продемонстровано нерівномірний вплив розчинів AlCl3 різної концентрації на силову відповідь та характер вкорочення м’язових волокон.

Ключові слова: , , , ,


Посилання:

  1. Winship KA. Toxicity of aluminium: a historical review, Part 2. Adverse Drug React Toxicol Rev. 1993 Autumn;12(3):177-211. Review. PubMed
  2. Arnoys EJ, Schindler M. Aluminum modifies the viscosity of filamentous actin solutions as measured by optical displacement microviscometry. Anal Biochem. 2000 Jan 1;277(1):1-10. PubMedCrossRef
  3.  Bohuts’ka KI, Pryluts’kyy IuI, Nozdrenko DM. The use of aluminum and its compounds for the biomedical purposes. Fiziol Zhurn. 2014;60(1):91-7. Review. Ukrainian. PubMed
  4. Pérez-Granados AM, Vaquero MP. Silicon, aluminium, arsenic and lithium: essentiality and human health implications. J Nutr Health Aging. 2002;6(2):154-62. Review. PubMed
  5. Nayak P. Aluminum: impacts and disease. Environ Res. 2002 Jun;89(2):101-15. Review. PubMed, CrossRef
  6. Järvinen TA, Järvinen TL, Kääriäinen M, Kalimo H, Järvinen M. Muscle injuries: biology and treatment. Am J Sports Med. 2005 May;33(5):745-64. Review. PubMed, CrossRef
  7. Nozdrenko DN, Bogutska KI. About molecular mechanisms of fiber muscle contraction at transition to new equilibrium state: Analysis of experimental data using three-componential electrical stimulating signal. Biopolym Cell. 2005;21(3):283-286. CrossRef
  8. Nozdrenko DN, Shut AN, Prylutskyy YI. The possible molecular mechanism of the nonlinearity muscle contraction and its experimental substantiation. Biopolym Cell. 2005;21(1):80-83. CrossRef
  9. Bohutska KI, Tsymbaliuk OV, Danylova VM, Miroshnychenko MS. Effect of pH on ATPase myosin activity of different muscle types. Fiziol Zhurn. 2003;49(6):52-5. Ukrainian. PubMed
  10. Nozdrenko D, Prylutskyy Yu, Ritter U, Scharff P. Protective effect of water-soluble pristine C60 fullerene in ischemia-reperfusion injury of skeletal muscle.  Int J Phys Pathophys. 2014;5(2):97-110. CrossRef
  11. Nozdrenko DM, Bogutska KI, Prylutskyy YuI, Ritter U, Scharff P. C60 fullerene effect on the dynamics of fatigue processes in rat soleus muscle after ischemia-reperfusion. Biotechnol Acta. 2014;7(3):43-51. CrossRef
  12.  Khoma OM, Zavodovs’kyĭ DA, Nozdrenko DN, Dolhopolov OV, Miroshnychenko MS, Motuziuk OP. Dynamics of ischemic skeletal soleus muscle contraction in rats. Fiziol Zhurn. 2014;60(1):34-40. Ukrainian. PubMed
  13. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72(1-2):248-54. PubMed, CrossRef
  14. Fiske CH, Subbarow Y. The nature of the “inorganic phosphate” in voluntary muscle. Science. 1927 Apr 22;65(1686):401-3. PubMed, CrossRef
  15. Bertini E, Sigel A, Sigel B. Handbook of metalloproteins. Marcel Dekker, New York. Basel, 2001. 1182 p.
  16. Binder MD, Heckman CJ, Powers RK. The physiological control of motoneuron activity. Handbook of Physiology. Exercise: Regulation and Integration of Maltiple Systems. Bethesda: Am. Physiol. Soc. 1996. P. 3-53.
  17. Fisher AJ, Smith CA, Thoden J, Smith R, Sutoh K, Holden HM, Rayment I. Structural studies of myosin:nucleotide complexes: a revised model for the molecular basis of muscle contraction. Biophys J. 1995 Apr;68(4 Suppl):19S-26S; discussion 27S-28S. PubMed, PubMedCentral
  18. Nozdrenko DM, Bogutska KI, Prylutskyy YuI, Korolovych VF, Evstigneev MP, Ritter U, Scharff P. Impact of C60 fullerene on the dynamics of force-speed changes in soleus muscle of rat at ischemia-reperfusion injury. Fiziol Zhurn. 2015;61(2):48-59. PubMed
  19. Kosterin SO, Miroshnychenko MS, Davydovs’ka TL, Tsymbalyuk OV, Pryluts’kyy IuI. Phenomenologic mechano­kinetic model of Ca2+-dependent contraction-relaxation of smooth muscle. Ukr Biokhim Zhurn. 2001 Nov-Dec;73(6):138-42. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.