Ukr.Biochem.J. 2013; Том 85, № 3, травень-червень, c. 62-68

doi: http://dx.doi.org/10.15407/ubj85.03.062

Активні форми кисню та іони Са як можливі посередники за індукування теплостійкості рослинних клітин жасмоновою кислотою

Ю. В. Карпець, Ю. Є. Колупаєв, Т. О. Ястреб, О. І. Обозний,
М. В. Швиденко, Г. А. Лугова, А. О. Вайнер

Харківський національний аграрний університет ім. В. В. Докучаєва, Україна;
e-mail: plant_biology@mail.ru

Досліджували участь активних форм кисню та іонів кальцію в реалізації впливу екзогенної жасмонової кислоти (ЖАК) на теплостійкість колеоптилів пшениці. Дія ЖАК (1 мкМ) на колеоптилі спричинює транзиторне посилення генерації супероксидного аніон-радикала (O2•–) і пероксиду водню з максимумом через 15–30 хв від початку обробки. Протягом першої години від початку дії ЖАК на колеоптилі відзначається підвищенням активності супероксиддисмутази (СОД). Надалі (через 5–24 год після початку обробки) відбувається зниження генерації АФК колеоптилями дослідного варіанта, а активність СОД наближається до значень контролю. Індуковане ЖАК посилення генерації супероксидного радикала пригнічується антиоксидантом іонолом і частково нівелюється інгібітором NADPH-оксидази імідазолом, хелатором позаклітинного кальцію ЕГТА і блокатором кальцієвих каналів хлоридом лантану. Передобробка колеоптилів іонолом, імідазолом, ЕГТА і LaCl3 також частково знімає, спричинюваний екзогенною ЖАК ефект підвищення їхньої стійкості до ушкоджуючого прогріву. Висловлено припущення, що в реалізації фізіологічних ефектів ЖАК задіяні АФК, котрі генеруються з участю NADPH-оксидази, активність якої залежить від надходження іонів кальцію з позаклітинного простору в цитозоль.

Ключові слова: , , , , ,


Посилання:

  1. Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot. 2007 Oct;100(4):681-97. Review. PubMed, PubMed, CrossRef
  2. Paniuta ОО, Shabliy VA, Belava VN. Jasmonic acid and its participation in defence reactions of plant organism.  Ukr Biokhim Zhurn. 2009 Mar-Apr;81(2):14-26. PubMed
  3. Pauwels L, Inzé D, Goossens A. Jasmonate-inducible gene: What does it mean? Trends Plant Sci. 2009 Feb;14(2):87-91. Review. PubMedCrossRef
  4. Yoshikawa H, Honda C, Kondo S. Effect of low-temperature stress on abscisic acid, jasmonates, and polyamines in apples. Plant Growth Regul. 2007 May 25;52(3):199-206. CrossRef
  5.  Shana C, Liang Z. Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress . Plant Sci. 2010 Feb;178(2):130-9. CrossRef
  6. Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ. Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ. 2007 Apr;30(4):410-21. PubMed, CrossRef
  7. Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio LM. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ. 2006 Aug;29(8):1532-44.  PubMed, CrossRef
  8. Li RC, Shen LY, Liang JL, Zhao JH, Wang RX, Zou Y, Zhang T. Effects of Exogenous MeJA on Germination and Physiological Characteristics of Perilla frutescens Seed under High Temperature and Air Humidity Stress. Acta Botanica Boreali-Occidentalia Sinica. 2012;(2):312-317.
  9. Shakirova FM, Sakhabutdinova AR, Ishdavletova RS, Lastochkina OV. Effect of pretreatment with methyl jasmonate on the tolerance of wheat seedlings to salt stress. Agricultural Chemistry. 2010;(7):26-32.
  10. Keramat B, Kalantari KM, Arvin MJ. Effects of me-thyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). Afr J Microbiol Res. 2009;3(5):240-244.
  11. Kazan K, Manners JM. Jasmonate signaling: toward an integrated view. Plant Physiol. 2008 Apr;146(4):1459-68. PubMed, PubMedCentral, CrossRef
  12. Ozawa R, Bertea CM, Foti M, Narayana R, Arimura G, Muroi A, Horiuchi J, Nishioka T, Maffei ME, Takabayashi J. Exogenous polyamines elicit herbivore-induced volatiles in lima bean leaves: involvement of calcium, H2O2 and Jasmonic acid. Plant Cell Physiol. 2009 Dec;50(12):2183-99. PubMed, CrossRef
  13. Lushchak VI. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol. 2011 Mar;153(2):175-90. Review. PubMed, CrossRef
  14. Liu Y,  Pan  Q-H, Yang H-R., Liu Y-Y,  Huang W-D. The relationship between H2O2 and jasmonic acid in pea leaf wounding response. Russ J Plant Physiology. 2008;55(6):851-862. CrossRef
  15. Balbi V, Devoto A. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol. 2008;177(2):301-18. Review. PubMed
  16. Karpets YuV, Kolupaev YuE, Musatenko LI, Obozniy OI, Lugova GA, Yastreb TO. The Jasmonic acid induces heat resistance of wheat coleoptiles and their enzymatic antioxidant systems. Bull Kharkiv Nat Agrarian Univ. 2012;(3(27)):22-30.
  17.  Karpets YuV, Kolupaev YuYe, Yastreb TO. Effect of sodium nitroprusside on the thermal tolerance of wheat coleoptile: relationship with the formation and neutralization of reactive oxygen species. Russ J Plant Physiology. 2011;58(6):883-890.
  18. Kolupaev YuYe, Yastreb TO, Shvidenko MV. Karpets YuV. Influence of salicylic and succinic acids on formation of active oxygen forms in wheat coleoptiles. Ukr Biokhim Zhurn. 2011 Sep-Oct;83(5):82-8. PubMed
  19. Hung KT, Hsu Y, Kao CH. Hydrogen peroxide is involved in methyl jasmonate-induced senescence of rice leaves. Physiol Plant. 2006;127(2):293-303.  CrossRef
  20. Glyan’ko A. K., Ischenko O. O., Vasil’eva G. G. Influence ions of calcium on activity nadph oxidase in roots etiolated seedlings of pea (Pisum sativum L.). Bull Kharkiv Nat Agrarian Univ. 2012;(2(26)):46-53.
  21. Sagisaka S. The Occurrence of Peroxide in a Perennial Plant, Populus gelrica. Plant Physiol. 1976 Feb;57(2):308-9. PubMed, PubMedCentral, CrossRef
  22. Chevari S, Chaba I, Sekey I. Role of superoxide dismutase in cellular oxidative processes and method of its determination in biological materials. Lab Delo. 1985;(11):678-81. Russian. PubMed
  23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72(1-2):248-54. PubMedCrossRef
  24. Sagi M, Fluhr R. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 2006 Jun;141(2):336-40. PubMed, PubMedCentral, CrossRef
  25. Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem. 2008 Apr 4;283(14):8885-92. PubMed, CrossRef
  26. Minibayeva F, Kolesnikov O, Chasov A, Beckett RP, Lüthje S, Vylegzhanina N, Buck F, Böttger M. Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species. Plant Cell Environ. 2009 May;32(5):497-508. PubMed, CrossRef
  27. Sun QP, Yu YK, Wan SX, Zhao FK, Hao YL. Is there crosstalk between extracellular and intracellular calcium mobilization in jasmonic acid signaling. Plant Growth Regul. 2009;57(1):7-13. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.