Ukr.Biochem.J. 2016; Том 88, № 1, січень-лютий, c. 88-98

doi: http://dx.doi.org/10.15407/ubj88.01.088

Eкспресія генів, що кодують ензими метаболізму цистеїну в плаценті людини в першому і третьому триместрах неускладненої вагітності

К. Л. Корнєєва1, Р. Р. Родрігес1, С. В. Ральченко2, О. В. Мартиновська2,
А. О. Фролова1, О. П. Марценюк1, Л. В. Манжула3,
В. Т. Мельник4, О. Ю. Шкоропад4, М. Ю. Оболенська1

1Інститут молекулярної біології і генетики НАН України, Київ;
2Київський національний університет імені Тараса Шевченка, Україна;
3Київський міський пологовий будинок № 3, Україна;
4Ірпінський пологовий будинок, Україна;
e-mail: m.obolenska@gmail.com

Вміст цистеїну в клітині регулюється в обмеженому інтервалі концентрацій через його цито- і нейротоксичність у разі перевищення критичного рівня і його брак для синтезу протеїнів й інших життєво важливих метаболітів у разі зниженої концентрації.Механізми регуляції концентрації цистеїну і продуктів його метаболізму, глутатіону, тау­рину і неорганічних сірковмісних сполук, в плаценті людини практично не досліджені, хоча метаболізм цистеїну тісно пов’язаний з підтриманням окисно-відновного статусу і захистом від вільнорадикального окислення, утилізацією гомоцистеїну і детоксикаційною функцією. Ці процеси набувають особливого значення в плаценті, яка зазнає різких змін в концентрації кисню, що надходить на різних етапах її розвитку, і яка є останнім метаболічно активним бар’єром між організмом матері і плода. У зразках плаценти людини з першого і третього триместрів неускладненої вагітності ми дослідили експресію генів, що кодують ензими метаболізму цистеїну. Рівень індивідуальних мРНК CDO, CSAD, ADO, SUOX, GCLC і GCLM у складі тотальної РНК оцінювали за реакціями зворотної транскрипції і кількісної ланцюгової полімеризації і порівнювали з відповідними даними мікромасив-експериментів із бази даних GEO після проведення повторного біоінформативного аналізу. Вміст протеїну визначали вестерн-блот аналізом. У третьому триместрі в порівнянні з першим значно підвищується рівень CDO мРНК, залишається майже незмінним рівень GCLM і GCLC мРНК і різною мірою знижується рівень інших мРНК. У цілому, загальний характер змін збігається з результатами мікромасив-експериментів, але на відміну від них є інформативнішим для обмеженої групи генів. Визначені в роботі різні за спрямованістю і величиною істотні відмінності в експресії досліджених генів між першим і третім триместрами вагітності є базовими для подальших досліджень експресії цих ензимів і фенотипу плаценти загалом у нормі і за патології.

Ключові слова: , ,


Посилання:

  1. Patel J, Landers K, Mortimer RH, Richard K. Regulation of hypoxia inducible factors (HIF) in hypoxia and normoxia during placental development. Placenta. 2010 Nov;31(11):951-7. Review. PubMed, CrossRef
  2. Esterman A, Greco MA, Mitani Y, Finlay TH, Ismail-Beigi F, Dancis J. The effect of hypoxia on human trophoblast in culture: morphology, glucose transport and metabolism. Placenta. 1997 Mar-Apr;18(2-3):129-36. PubMed
  3. Adams T, Yeh C, Bennett-Kunzier N, Kinzler WL. Long-term maternal morbidity and mortality associated with ischemic placental disease. Semin Perinatol. 2014 Apr;38(3):146-50. Review. PubMed, CrossRef
  4. Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem. 1990 May;1(5):228-37. PubMed
  5. Finkelstein JD. Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost. 2000;26(3):219-25. Review. PubMed
  6. Stipanuk MH, Ueki I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis. 2011 Feb;34(1):17-32. Review. PubMed, PubMedCentral, CrossRef
  7. Ueki I, Roman HB, Hirschberger LL, Junior C, Stipanuk MH. Extrahepatic tissues compensate for loss of hepatic taurine synthesis in mice with liver-specific knockout of cysteine dioxygenase. Am J Physiol Endocrinol Metab. 2012 May 1;302(10):E1292-9. PubMed, PubMedCentral, CrossRef
  8. Gabaldon M. Oxidation of cysteine and homocysteine by bovine albumin. Arch Biochem Biophys. 2004 Nov 15;431(2):178-88. PubMed
  9. El-Khairy L, Vollset SE, Refsum H, Ueland PM. Plasma total cysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine Study. Am J Clin Nutr. 2003 Feb;77(2):467-72. PubMed
  10. Ottosen LD, Hindkaer J, Husth M, Petersen DE, Kirk J, Ingerslev HJ. Observations on intrauterine oxygen tension measured by fibre-optic microsensors. Reprod Biomed Online. 2006 Sep;13(3):380-5. PubMed
  11. Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002 Jun;87(6):2954-9. PubMed
  12. Stipanuk MH, Dominy JE Jr, Lee JI, Coloso RM. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr. 2006 Jun;136(6 Suppl):1652S-1659S. Review. PubMed
  13. Driggers CM, Cooley RB, Sankaran B, Hirschberger LL, Stipanuk MH, Karplus PA. Cysteine dioxygenase structures from pH4 to 9: consistent cys-persulfenate formation at intermediate pH and a Cys-bound enzyme at higher pH. J Mol Biol. 2013 Sep 9;425(17):3121-36. PubMed, PubMedCentral, CrossRef
  14. Rajapakshe A, Tollin G, Enemark JH. Kinetic and thermodynamic effects of mutations of human sulfite oxidase. Chem Biodivers. 2012 Sep;9(9):1621-34. Review. PubMed, PubMedCentral, CrossRef
  15. Dominy JE Jr, Simmons CR, Hirschberger LL, Hwang J, Coloso RM, Stipanuk MH. Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J Biol Chem. 2007 Aug 31;282(35):25189-98. PubMed
  16. Stipanuk MH, Simmons CR, Karplus PA, Dominy JE Jr. Thiol dioxygenases: unique families of cupin proteins. Amino Acids. 2011 Jun;41(1):91-102. Review. PubMed, PubMedCentral, CrossRef
  17. Sikalidis AK, Mazor KM, Lee JI, Roman HB, Hirschberger LL, Stipanuk MH. Upregulation of capacity for glutathione synthesis in response to amino acid deprivation: regulation of glutamate-cysteine ligase subunits. Amino Acids. 2014 May;46(5):1285-96. PubMed, PubMedCentral, CrossRef
  18. Solanky N, Requena Jimenez A, D’Souza SW, Sibley CP, Glazier JD. Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta. 2010 Feb;31(2):134-43.  PubMed, CrossRef
  19. Mislanova C, Martsenyuk O, Huppertz B, Obolenskaya M. Placental markers of folate-related metabolism in preeclampsia. Reproduction. 2011 Sep;142(3):467-76. PubMed, CrossRef
  20. Obolenskaya MYu, Rodriguez RR, Martsenyuk OP. Folate-related processes in human placenta: gene expression, aminothiols, proliferation and apoptosis. Ukr Biokhim Zhurn. 2011 Jan-Feb;83(1):5-17. Review. Ukrainian. PubMed
  21. Redman CW, Sargent IL. Placental stress and pre-eclampsia: a revised view. Placenta. 2009 Mar;30(Suppl A):S38-42.  PubMedCrossRef
  22. Ditchfield AM, Desforges M, Mills TA, Glazier JD, Wareing M, Mynett K, Sibley CP, Greenwood SL. Maternal obesity is associated with a reduction in placental taurine transporter activity. Int J Obes (Lond). 2015 Apr;39(4):557-64. PubMed, PubMedCentral, CrossRef
  23. Desforges M, Parsons L, Westwood M, Sibley CP, Greenwood SL. Taurine transport in human placental trophoblast is important for regulation of cell differentiation and survival. Cell Death Dis. 2013 Mar 21;4:e559. PubMed, PubMedCentral, CrossRef
  24. Korneyeva KL, Rodriges RR, Ralchenko SV, Vakulenko AV, Manzhula LV, Melnik VT, Vereshchak OYu, Obolenskaya MYu. The expression of genes encoding key enzyme of folate; dependent metabolism in human placenta in the first and third trimesters of uncomplicated pregnancy. Perinatol Pediatr. 2014; 4(60):24-30.
  25. Obolenskaya MY, Teplyuk NM, Divi RL, Poirier MC, Filimonova NB, Zadrozna M, Pasanen MJ. Human placental glutathione S-transferase activity and polycyclic aromatic hydrocarbon DNA adducts as biomarkers for environmental oxidative stress in placentas from pregnant women living in radioactivity- and chemically-polluted regions. Toxicol Lett. 2010 Jul 1;196(2):80-6. PubMed, PubMedCentral, CrossRef
  26. Guttmacher AE, Maddox YT, Spong CY. The Human Placenta Project: placental structure, development, and function in real time. Placenta. 2014 May;35(5):303-4. PubMed, PubMedCentral, CrossRef
  27. Mikheev AM, Nabekura T, Kaddoumi A, Bammler TK, Govindarajan R, Hebert MF, Unadkat JD. Profiling gene expression in human placentae of different gestational ages: an OPRU Network and UW SCOR Study. Reprod Sci. 2008 Nov;15(9):866-77. PubMed, PubMedCentral, CrossRef
  28. Lee JI, Londono M, Hirschberger LL, Stipanuk MH. Regulation of cysteine dioxygenase and gamma-glutamylcysteine synthetase is associated with hepatic cysteine level. J Nutr Biochem. 2004 Feb;15(2):112-22. PubMed
  29. Dominy JE Jr, Hwang J, Guo S, Hirschberger LL, Zhang S, Stipanuk MH. Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity. J Biol Chem. 2008 May 2;283(18):12188-201. PubMedPubMedCentral. CrossRef
  30. Stipanuk MH, Ueki I, Dominy JE Jr, Simmons CR, Hirschberger LL. Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids. 2009 May;37(1):55-63. Review. PubMed, PubMedCentral, CrossRef
  31. Brait M, Ling S, Nagpal JK, Chang X, Park HL, Lee J, Okamura J, Yamashita K, Sidransky D, Kim MS. Cysteine dioxygenase 1 is a tumor suppressor gene silenced by promoter methylation in multiple human cancers. PLoS One. 2012;7(9):e44951. PubMed, PubMedCentral, CrossRef
  32. Huppertz B. Maternal-fetal interactions, predictive markers for preeclampsia, and programming. J Reprod Immunol. 2015 Apr;108:26-32.  Review. PubMed, CrossRef
  33. Morrish DW, Dakour J, Li H. Functional regulation of human trophoblast differentiation. J Reprod Immunol. 1998 Aug;39(1-2):179-95. Review. PubMed
  34. Recasens M, Benezra R, Basset P, Mandel P. Cysteine sulfinate aminotransferase and aspartate aminotransferase isoenzymes of rat brain. Purification, characterization, and further evidence for identity. Biochemistry. 1980 Sep 30;19(20):4583-9. PubMed
  35. Yagi T, Kagamiyama H, Nozaki M. Cysteine sulfinate transamination activity of aspartate aminotransferases. Biochem Biophys Res Commun. 1979 Sep 27;90(2):447-52. PubMed
  36. Meister A. Glutathione metabolism and its selective modification. J Biol Chem. 1988 Nov 25;263(33):17205-8. Review. PubMed
  37. Tappaz ML. Taurine biosynthetic enzymes and taurine transporter: molecular identification and regulations. Neurochem Res. 2004 Jan;29(1):83-96. Review. PubMed
  38. Philipps AF, Holzman IR, Teng C, Battaglia FC. Tissue concentrations of free amino acids in term human placentas. Am J Obstet Gynecol. 1978 Aug 15;131(8):881-7. PubMed
  39. Ripps H, Shen W. Review: taurine: a “very essential” amino acid. Mol Vis. 2012;18:2673-86. Review. PubMed, PubMedCentral
  40. Guion-Rain M-C, Portemer C, Chatagner F. Rat liver cysteine sulfinate decarboxylase: purification, new appraisal of the molecular weight and determination of catalytic properties. Biochim Biophys Acta. 1975 Mar 28;384(1):265-76. PubMed, CrossRef
  41. Oertel WH, Schmechel DE, Weise VK, Ransom DH, Tappaz ML, Krutzsch HC, Kopin IJ. Comparison of cysteine sulphinic acid decarboxylase isoenzymes and glutamic acid decarboxylase in rat liver and brain. Neuroscience. 1981;6(12):2701-14. PubMed
  42. Desforges M, Parsons L, Westwood M, Sibley CP, Greenwood SL. Taurine transport in human placental trophoblast is important for regulation of cell differentiation and survival. Cell Death Dis. 2013 Mar 21;4:e559. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.