Ukr.Biochem.J. 2013; Том 85, № 5, вересень-жовтень, c. 88-96

doi: http://dx.doi.org/10.15407/ubj85.05.088

Вплив N-стеароїлетаноламіну на активність ензимів антиоксидантного захисту, вміст продуктів пол і нітрит-аніона в плазмі крові та печінці щурів з індукованою інсулінорезистентністю

О. В. Онопченко, Г. В. Косякова, Т. М. Горідько,
А. Г. Бердишев, О. Ф. Мегедь, Н. М. Гула

Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
e-mail: onop.89.av@mail.ru

У роботі досліджено вплив N-стеароїлетаноламіну (NSE) на вміст продуктів пероксидного окислення ліпідів, активність ензимів антиоксидантного захисту та вміст нітрит-аніона в плазмі крові та печінці щурів з індукованою інсулінорезистентністю. Інсулінорезистентний стан (ІР-стан) індукували довготривалим жировим навантаженням (відсоток жиру в загальному раціоні щурів складав 58%) протягом 6 місяців у комбінації з одноразовою ін’єкцією стрептозотоцину (15 мг/кг маси тіла). Наявність ІР-стану в тварин визначали за результатами глюкозотолерантного тесту та вмісту інсуліну в плазмі крові. Показано, що за ІР-стану в печінці щурів зростає рівень продуктів ПОЛ, знижується активність супероксиддисмутази та каталази, тоді як активність глутатіонпероксидази істотно зростає. Також у цієї групи щурів виявлено вірогідне зниження вмісту нітрит-аніона в плазмі крові та печінці відносно значень у тварин контрольної групи. Введення протягом двох тижнів перорально водної суспензії NSE в дозі 50 мг/кг маси тіла щурам з індукованим ІР-станом сприяє зростанню активності супероксиддисмутази, каталази та ще більшому зростанню активності глутатіонпероксидази. При цьому відбувається зниження інтенсивності процесів ПОЛ. За дії NSE виявлено нормалізацію вмісту стабільного метаболіту оксиду азоту – нітрит-аніона як у плазмі крові, так і в печінці щурів з ІР-станом. Таким чином, застосування NSE відновлює про-/антиоксидантний баланс та сприяє нормалізації вмісту нітрит-аніона в плазмі крові та печінці щурів з ІР-станом.

Ключові слова: , , ,


Посилання:

  1. Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov. 2008 May;7(5):438-55. Review. PubMed, CrossRef
  2. Matias I, Gonthier MP, Petrosino S, Docimo L, Capasso R, Hoareau L, Monteleone P, Roche R, Izzo AA, Di Marzo V. Role and regulation of acylethanolamides in energy balance: focus on adipocytes and beta-cells. Br J Pharmacol. 2007 Nov;152(5):676-90. PubMed, PubMedCentral, CrossRef
  3. Hula NM, Chumak AA, Berdyshev AH, Mehed’ OF, Horid’ko TM, Kindruk NL, Kosiakova HV, Zhukov OD. Anti-inflammatory effect of N-stearoylethanolamine in experimental burn injury in rats. Ukr Biokhim Zhurn. 2009 Mar-Apr;81(2):107-16. PubMed
  4. Gulaia NM, Berdyshev AG, Chumak AA, Meged’ EF, Kindruk NL, Gorid’ko TN. Cardioprotective effect of N-stearoylethanolamine under the anaphylactic shock in guinea pigs.  Biomed Khim. 2009 Nov-Dec;55(6):743-9. Russian. PubMed
  5. Goridko TM, Kosiakova HV, Berdyshev AH, Bazylyanska VR, Margitich VM, Gula NM. The influence of N-stearoylethanolamine on the activity of antioxidant enzymes and on the level of stable NO metabolites in the rat testes and blood plasma at the early stages of streptozotocine-induced diabetes. Ukr Biokhim Zhurn. 2012 May-Jun;84(3):37-43. Ukrainian. PubMed
  6. Gulaya NM, Kuzmenko AI, Margitich VM, Govseeva NM, Melnichuk SD, Goridko TM, Zhukov AD. Long-chain N-acylethanolamines inhibit lipid peroxidation in rat liver mitochondria under acute hypoxic hypoxia. Chem Phys Lipids. 1998 Dec;97(1):49-54. PubMed, CrossRef
  7. Carpentier YA, Portois L, Malaisse WJ. n-3 fatty acids and the metabolic syndrome. Am J Clin Nutr. 2006 Jun;83(6 Suppl):1499S-1504S. Review. PubMed
  8.  Svegliati-Baroni G, Candelaresi C, Saccomanno S, Ferretti G, Bachetti T, Marzioni M, De Minicis S, Nobili L, Salzano R, Omenetti A, Pacetti D, Sigmund S, Benedetti A, Casini A. A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-alpha and n-3 polyunsaturated fatty acid treatment on liver injury. Am J Pathol. 2006 Sep;169(3):846-60. PubMedPubMedCentral, CrossRef
  9. Zhang F, Ye C, Li G, Ding W, Zhou W, Zhu H, Chen G, Luo T, Guang M, Liu Y, Zhang D, Zheng S, Yang J, Gu Y, Xie X, Luo M. The rat model of type 2 diabetic mellitus and its glycometabolism characters. Exp Anim. 2003 Oct;52(5):401-7. PubMed, CrossRef
  10. Collier GR, Chisholm K, Sykes S, Dryden PA, O’Dea K. More severe impairment of oral than intravenous glucose tolerance in rats after eating a high fat diet. J Nutr. 1985 Nov;115(11):1471-6. PubMed
  11. Tietz N.  Encyclopedia of clinical laboratory tests. M.: Labinform, 2000; 948 p.
  12. Hosker JP, Matthews DR, Rudenski AS, Burnett MA, Darling P, Bown EG, Turner RC. Continuous infusion of glucose with model assessment: measurement of insulin resistance and beta-cell function in man. Diabetologia. 1985 Jul;28(7):401-11. PubMed, CrossRef
  13. Vladimirov YuA, Archakov AI. Lipids peroxidation in biological membranes. Moscow: Nauka, 1972; 252 p.
  14. Melnychuk SD, Kuzmenko AI, Margitich VM, Govseeva NN, Gorid’ko TN, Hulaia NM. Effect of carbon dioxide on free radical processes as affected by artificial hypobiosis in rats. Ukr Biokhim Zhurn. 1998 Jan-Feb;70(1):87-94. Russian. PubMed
  15. Koroliuk MA, Ivanova LI, Mayorova IG, Tokarev VE. A method of determining catalase activity. Lab Delo. 1988;(1):16-9. Russian. PubMed
  16. Csóvári S, Andyal T, Strenger J. Determination of the antioxidant properties of the blood and their diagnostic significance in the elderly. Lab Delo. 1991;(10):9-13. Russian. PubMed
  17. Pereslegina IA. The activity of antioxidant enzymes in the saliva of normal children. Lab Delo. 1989;(11):20-3. Russian. PubMed
  18. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131-8. PubMed, CrossRef
  19. Kolbina MV, Dolgikh VT, Chesnokov VI. Metabolic and functional cardiac changes at II-type pancreatic diabetes and abdominal adiposity in rats. Bull Siber Med. 2003;2(3):30-35.
  20. Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H, Nabemoto S, Kurita S, Ota T, Ando H, Miyamoto K, Kaneko S. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem. 2009 May 29;284(22):14809-18. Epub 2009 Mar 30.
    PubMed, PubMedCentral, CrossRef
  21. Reddy VP, Zhu X, Perry G, Smith MA. Oxidative stress in diabetes and Alzheimer’s disease. J Alzheimers Dis. 2009;16(4):763-74. Review. PubMed, PubMedCentral, CrossRef
  22. Hunt JV, Smith CC, Wolff SP. Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes. 1990 Nov;39(11):1420-4. PubMedCrossRef
  23. Kesavulu MM, Giri R, Kameswara Rao B, Apparao C. Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes Metab. 2000 Nov;26(5):387-92. PubMed
  24. Muchová J, Liptáková A, Országhová Z, Garaiová I, Tison P, Cársky J, Duracková Z. Antioxidant systems in polymorphonuclear leucocytes of Type 2 diabetes mellitus. Diabet Med. 1999 Jan;16(1):74-8. PubMed, CrossRef
  25. Mamedgasanov RM, Rakhmani SA. Dynamics of lipid peroxidation in patients with noninsulin-dependent diabetes mellitus. Probl Endokrinol (Mosk). 1989 Jan-Feb;35(1):19-21. Russian. PubMed
  26. Bickel PE. Lipid rafts and insulin signaling. Am J Physiol Endocrinol Metab. 2002 Jan;282(1):E1-E10. Review. PubMed
  27. Bełtowski J, Wójcicka G, Górny D, Marciniak A. The effect of dietary-induced obesity on lipid peroxidation, antioxidant enzymes and total plasma antioxidant capacity. J Physiol Pharmacol. 2000 Dec;51(4 Pt 2):883-96.  PubMed
  28. Hamden K, Carreau S, Jamoussi K, Miladi S, Lajmi S, Aloulou D, Ayadi F, Elfeki A. 1Alpha,25 dihydroxyvitamin D3: therapeutic and preventive effects against oxidative stress, hepatic, pancreatic and renal injury in alloxan-induced diabetes in rats. J Nutr Sci Vitaminol (Tokyo). 2009 Jun;55(3):215-22. PubMedCrossRef
  29. Fridovich I. Superoxide dismutases. Annu Rev Biochem. 1975;44(1):147-59. Review. PubMed, CrossRef
  30. Blum J, Fridovich I. Inactivation of glutathione peroxidase by superoxide radical. Arch Biochem Biophys. 1985 Aug 1;240(2):500-8. PubMed, CrossRef
  31. Domínguez L, Sosa-Peinado A, Hansberg W. Catalase evolved to concentrate H2O2 at its active site. Arch Biochem Biophys. 2010 Aug 1;500(1):82-91. PubMed, CrossRef
  32. Thomas JP, Maiorino M, Ursini F, Girotti AW. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J Biol Chem. 1990 Jan 5;265(1):454-61. PubMed
  33. McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, Lei XG. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci USA. 2004 Jun 15;101(24):8852-7. PubMed, PubMedCentralCrossRef
  34.  Horidko TM, Hula NM, Stohniy NA, Mehed OF, Klimashevsky VM, Shovkun SA, Kindruk NL, Berdyshev AH.  Effect of N-stearoylethanolamine on the lipid peroxidation process and lipid composition of the rat liver in acute morphine intoxication. Ukr Biokhim Zhurn. 2007 Sep-Oct;79(5):175-85. Ukrainian. PubMed
  35. Gulaya NM, Melnik AA, Balkov DI, Volkov GL, Vysotskiy MV, Vaskovsky VE. The effect of long-chain N-acylethanolamines on some membrane-associated functions of neuroblastoma C1300 N18 cells. Biochim Biophys Acta. 1993 Nov 7;1152(2):280-8. PubMed, CrossRef
  36. Kahn NN, Acharya K, Bhattacharya S, Acharya R, Mazumder S, Bauman WA, Sinha AK. Nitric oxide: the “second messenger” of insulin. IUBMB Life. 2000 May;49(5):441-50. PubMed, CrossRef
  37. Krause M, Rodrigues-Krause J, O’Hagan C, De Vito G, Boreham C, Susta D, Newsholme P, Murphy C. Differential nitric oxide levels in the blood and skeletal muscle of type 2 diabetic subjects may be consequence of adiposity: a preliminary study. Metabolism. 2012 Nov;61(11):1528-37. PubMed, CrossRef
  38. Kashyap SR, Roman LJ, Lamont J, Masters BS, Bajaj M, Suraamornkul S, Belfort R, Berria R, Kellogg DL Jr, Liu Y, DeFronzo RA. Insulin resistance is associated with impaired nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects. J Clin Endocrinol Metab. 2005 Feb;90(2):1100-5. PubMed, CrossRef
  39. Hula NM, Kosiakova HV, Berdyshev AH. The effects of N-stearoylethanolamine on the NO-synthase pathway of NO generation in the aorta and heart of streptozotocin-induced diabetic rats. Ukr Biokhim Zhurn. 2007 Sep-Oct;79(5):153-8. Ukrainian. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.