Ukr.Biochem.J. 2017; Том 89, № 2, березень-квітень, c. 55-69

doi: https://doi.org/10.15407/ubj89.02.055

Пригнічення IRE1 змінює гіпоксичну регуляцію експресії генів катепсинів та LONP1 у клітинах гліоми лінії U87

O. Г. Мінченко1, О. О. Рябовол1, О. В. Галкін1, Д. O. Мінченко1,2, О. О. Ратушна1

1Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
e-mail: ominchenko@yahoo.com;
2Національний медичний університет ім. О. О. Богомольця, Київ, Україна

Вивчено вплив гіпоксії на експресію ядерних генів, що кодують катепсини та LONP1/PRSS15 у клітинах гліоми лінії U87 в умовах пригнічення залежного від інозитолу ензиму 1 (IRE1). Показано, що гіпоксія збільшувала експресію генів CTSA, CTSB, CTSD, CTSF, CTSK та LONP1 і знижувала експресію генів CTSC, CTSL, CTSO та CTSS у контрольних (трансфікованих вектором без вставки) клітин гліоми. Пригнічення функції сигнального ензиму IRE1 у цих клітинах змінювало ефект гіпоксії на експресію більшості досліджених генів: знімало ефект гіпоксії на експресію генів CTSA та LONP1, міняло напрям змін на експресію генів CTSD та CTSS, послаблювало – на експресію генів CTSF та CTSK і посилювало – на експресію генів CTSB та CTSL. Таким чином, гіпоксія змінювала рівень експресії більшості досліджених генів залежно від функціональної активності ензиму IRE1, центрального медіатору стресу ендоплазматичного ретикулума, який контролює проліферацію клітин та ріст пухлин.

Ключові слова: , , , , ,


Посилання:

  1. Timur ZK, Akyildiz Demir S, Seyrantepe V. Lysosomal Cathepsin A Plays a Significant Role in the Processing of Endogenous Bioactive Peptides. Front Mol Biosci. 2016 Oct 25;3:68. PubMed, PubMedCentral
  2. Kaminskyy V, Zhivotovsky B. Proteases in autophagy. Biochim Biophys Acta. 2012 Jan;1824(1):44-50. Review. PubMed, CrossRef
  3. Haznedaroglu IC, Malkan UY. Local bone marrow renin-angiotensin system in the genesis of leukemia and other malignancies. Eur Rev Med Pharmacol Sci. 2016 Oct;20(19):4089-4111. PubMed
  4. Minarowska A, Minarowski Ł, Karwowska A, Milewska AJ, Gacko M. Role of cathepsin A and cathepsin C in the regulation of glycosidase activity. Folia Histochem Cytobiol. 2012 Apr 24;50(1):20-4. Review. PubMed, CrossRef
  5. Petrera A, Kern U, Linz D, Gomez-Auli A, Hohl M, Gassenhuber J, Sadowski T, Schilling O. Proteomic Profiling of Cardiomyocyte-Specific Cathepsin A Overexpression Links Cathepsin A to the Oxidative Stress Response. J Proteome Res. 2016 Sep 2;15(9):3188-95.  PubMed, CrossRef
  6. Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. Proteomics Clin Appl. 2014 Jun;8(5-6):427-37. Review. PubMed, PubMedCentral, CrossRef
  7. Mitrović A, Kljun J, Sosič I, Gobec S, Turel I, Kos J. Clioquinol-ruthenium complex impairs tumour cell invasion by inhibiting cathepsin B activity. Dalton Trans. 2016 Nov 14;45(42):16913-16921.  PubMed
  8. Mezawa M, Pinto VI, Kazembe MP, Lee WS, McCulloch CA. Filamin A regulates the organization and remodeling of the pericellular collagen matrix. FASEB J. 2016 Oct;30(10):3613-3627. PubMed
  9. Huber MC, Falkenberg N, Hauck SM, Priller M, Braselmann H, Feuchtinger A, Walch A, Schmitt M, Aubele M. Cyr61 and YB-1 are novel interacting partners of uPAR and elevate the malignancy of triple-negative breast cancer. Oncotarget. 2016 Jul 12;7(28):44062-44075. PubMed, PubMed, CrossRef
  10. Liu F, Li X, Lu C, Bai A, Bielawski J, Bielawska A, Marshall B, Schoenlein PV, Lebedyeva IO, Liu K. Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget. 2016 Dec 20;7(51):83907-83925. PubMed, CrossRef
  11. Jiang Y, Woosley AN, Sivalingam N, Natarajan S, Howe PH. Cathepsin-B-mediated cleavage of Disabled-2 regulates TGF-β-induced autophagy. Nat Cell Biol. 2016 Aug;18(8):851-63. PubMed, CrossRef
  12. Man SM, Kanneganti TD. Regulation of lysosomal dynamics and autophagy by CTSB/cathepsin B. Autophagy. 2016 Dec;12(12):2504-2505. PubMed, PubMedCentral
  13. Galluzzi L, Bravo-San Pedro JM, Kroemer G. Autophagy Mediates Tumor Suppression via Cellular Senescence. Trends Cell Biol. 2016 Jan;26(1):1-3. Epub 2015 Nov 21.
    PubMed, CrossRef
  14. Ruffell B, Affara NI, Cottone L, Junankar S, Johansson M, DeNardo DG, Korets L, Reinheckel T, Sloane BF, Bogyo M, Coussens LM. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev. 2013 Oct 1;27(19):2086-98. PubMed, PubMedCentral, CrossRef
  15. Park YJ, Kim EK, Bae JY, Moon S, Kim J. Human telomerase reverse transcriptase (hTERT) promotes cancer invasion by modulating cathepsin D via early growth response (EGR)-1. Cancer Lett. 2016 Jan 28;370(2):222-31. PubMed, CrossRef
  16. Christensen J, Shastri VP. Matrix-metalloproteinase-9 is cleaved and activated by cathepsin K. BMC Res Notes. 2015 Jul 29;8:322. PubMed, PubMedCentral, CrossRef
  17. Vizovišek M, Vidmar R, Van Quickelberghe E, Impens F, Andjelković U, Sobotič B, Stoka V, Gevaert K, Turk B, Fonović M. Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S. Proteomics. 2015 Jul;15(14):2479-90. PubMed, CrossRef
  18. Huang CC, Lee CC, Lin HH, Chen MC, Lin CC, Chang JY. Autophagy-Regulated ROS from Xanthine Oxidase Acts as an Early Effector for Triggering Late Mitochondria-Dependent Apoptosis in Cathepsin S-Targeted Tumor Cells. PLoS One. 2015 Jun 1;10(6):e0128045. PubMed, PubMedCentral, CrossRef
  19. Quirós PM, Español Y, Acín-Pérez R, Rodríguez F1, Bárcena C, Watanabe K, Calvo E, Loureiro M, Fernández-García MS, Fueyo A, Vázquez J, Enríquez JA, López-Otín C. ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep. 2014 Jul 24;8(2):542-56. PubMed, CrossRef
  20. Gibellini L, Pinti M, Bartolomeo R, De Biasi S, Cormio A, Musicco C, Carnevale G, Pecorini S, Nasi M, De Pol A, Cossarizza A. Inhibition of Lon protease by triterpenoids alters mitochondria and is associated to cell death in human cancer cells. Oncotarget. 2015 Sep 22;6(28):25466-83. PubMed, PubMedCentral, CrossRef
  21. Kaufman RJ, Malhotra JD. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. Biochim Biophys Acta. 2014 Oct;1843(10):2233-9. Review. PubMed, PubMedCentral, CrossRef
  22. Bezawork-Geleta A, Brodie EJ, Dougan DA, Truscott KN. LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci Rep. 2015 Dec 2;5:17397. PubMed, PubMedCentral, CrossRef
  23. Pinti M, Gibellini L, Nasi M, De Biasi S, Bortolotti CA, Iannone A, Cossarizza A. Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim Biophys Acta. 2016 Aug;1857(8):1300-6.  Review. PubMed, CrossRef
  24. Quirós PM, Bárcena C, López-Otín C. Lon protease: A key enzyme controlling mitochondrial bioenergetics in cancer. Mol Cell Oncol. 2014 Dec 31;1(4):e968505. PubMed, PubMedCentral, CrossRef
  25. Pinti M, Gibellini L, Liu Y, Xu S, Lu B, Cossarizza A. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol Life Sci. 2015 Dec;72(24):4807-24. Review. PubMed, CrossRef
  26. Goo HG, Rhim H, Kang S. HtrA2/Omi influences the stability of LON protease 1 and prohibitin, proteins involved in mitochondrial homeostasis. Exp Cell Res. 2014 Nov 1;328(2):456-65. PubMed, CrossRef
  27. Auf G, Jabouille A, Guérit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA. 2010 Aug 31;107(35):15553-8. PubMed, PubMedCentral, CrossRef
  28. Malhotra JD, Kaufman RJ. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol. 2011 Sep 1;3(9):a004424. PubMed, PubMedCentral, CrossRef
  29. Pluquet O, Dejeans N, Chevet E. Watching the clock: endoplasmic reticulum-mediated control of circadian rhythms in cancer. Ann Med. 2014 Jun;46(4):233-43. Review. PubMed, CrossRef
  30. Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov. 2013 Sep;12(9):703-19. Review. PubMed, CrossRef
  31. Lenihan CR, Taylor CT. The impact of hypoxia on cell death pathways. Biochem Soc Trans. 2013 Apr;41(2):657-63. Review. PubMed, CrossRef
  32. Chesney J, Clark J, Klarer AC, Imbert-Fernandez Y, Lane AN, Telang S. Fructose-2,6-bisphosphate synthesis by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is required for the glycolytic response to hypoxia and tumor growth. Oncotarget. 2014 Aug 30;5(16):6670-86. PubMed, PubMedCentral
  33. Minchenko OH, Tsymbal DO, Minchenko DO, Moenner M, Kovalevska OV, Lypova NM. Inhibition of kinase and endoribonuclease activity of ERN1/IRE1α affects expression of proliferationrelated genes in U87 glioma cells. Endoplasm Reticul Stress Dis. 2015; 2(1): 18-29. CrossRef
  34. Manié SN, Lebeau J, Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am J Physiol Cell Physiol. 2014 Nov 15;307(10):C901-7. Review. PubMed, CrossRef
  35. Colombo SL, Palacios-Callender M, Frakich N, Carcamo S, Kovacs I, Tudzarova S, Moncada S. Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proc Natl Acad Sci USA. 2011 Dec 27;108(52):21069-74. PubMed, PubMedCentral, CrossRef
  36. Huber AL, Lebeau J, Guillaumot P, Pétrilli V, Malek M, Chilloux J, Fauvet F, Payen L, Kfoury A, Renno T, Chevet E, Manié SN. p58(IPK)-mediated attenuation of the proapoptotic PERK-CHOP pathway allows malignant progression upon low glucose. Mol Cell. 2013 Mar 28;49(6):1049-59. PubMed, CrossRef
  37. Tsymbal DO, Minchenko DO, Riabovol OO, Ratushna OO, Minchenko OH. IRE1 knockdown modifies glucose and glutamine deprivation effects on the expression of proliferation related genes in U87 glioma cells. Biotechnologia Acta. 2016; 9(1): 26-37. CrossRef
  38. Auf G, Jabouille A, Delugin M, Guérit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O, Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor. BMC Cancer. 2013 Dec 13;13:597. PubMed, PubMedCentral, CrossRef
  39. Minchenko DO, Danilovskyi SV, Kryvdiuk IV, Bakalets TV, Lypova NM, Karbovsky LL, Minchenko OH. Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells. Endoplasm Reticul Stress Dis. 2014; 1: 18-26. CrossRef
  40. Bochkov VN, Philippova M, Oskolkova O, Kadl A, Furnkranz A, Karabeg E, Afonyushkin T, Gruber F, Breuss J, Minchenko A, Mechtcheriakova D, Hohensinner P, Rychli K, Wojta J, Resink T, Erne P, Binder BR, Leitinger N. Oxidized phospholipids stimulate angiogenesis via autocrine mechanisms, implicating a novel role for lipid oxidation in the evolution of atherosclerotic lesions. Circ Res. 2006 Oct 13;99(8):900-8. PubMed, CrossRef
  41. Minchenko DO, Kharkova AP, Karbovskyi LL, Minchenko OH. Expression of insulin-like growth factor binding protein genes and its hypoxic regulation in U87 glioma cells depends on ERN1 mediated signaling pathway of endoplasmic reticulum stress. Endocr Regul. 2015 Apr;49(2):73-83. PubMed, CrossRef
  42. Minchenko OH, Tsymbal DO, Minchenko DO, Riabovol OO, Halkin OV, Ratushna OO. IRE-1α regulates expression of ubiquitin specific peptidases during hypoxic response in U87 glioma cells. Endoplasm Reticul Stress Dis. 2016; 3(1): 50-62. CrossRef
  43. Minchenko DO, Riabovol OO, Tsymbal DO, Ratushna OO, Minchenko OH. Inhibition of IRE1 signaling affects the expression of genes encoded glucocorticoid receptor and some related factors and their hypoxic regulation in U87 glioma cells. Endocr Regul. 2016 Jul;50(3):127-36. PubMed, CrossRef
  44. Minchenko OH, Tsymbal DO, Minchenko DO, Riabovol OO, Ratushna OO. Hypoxic regulation of the expressions of proliferation related genes in U87 glioma cells upon inhibition of IRE1 signaling. Ukr Biochem J. 2016; 88 (1): 11-21. CrossRef
  45. Minchenko DO, Riabovol OO, Ratushna OO, Minchenko OH. Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: effect of IRE1 inhibition. Endocr Regul. 2017; 51 (1): 8-19. PubMed, CrossRef
  46. Zhang W, Wang S, Wang Q, Yang Z, Pan Z, Li L. Overexpression of cysteine cathepsin L is a marker of invasion and metastasis in ovarian cancer. Oncol Rep. 2014 Mar;31(3):1334-42. PubMed, CrossRef
  47. Mori J, Tanikawa C, Funauchi Y, Lo PH, Nakamura Y, Matsuda K. Cystatin C as a p53-inducible apoptotic mediator that regulates cathepsin L activity. Cancer Sci. 2016 Mar;107(3):298-306. PubMed, PubMedCentral, CrossRef
  48. Sudhan DR, Rabaglino MB, Wood CE, Siemann DW. Cathepsin L in tumor angiogenesis and its therapeutic intervention by the small molecule inhibitor KGP94. Clin Exp Metastasis. 2016 Jun;33(5):461-73. PubMed, CrossRef
  49. Wang X, Xiong L, Yu G, Li D, Peng T, Luo D, Xu J. Cathepsin S silencing induces apoptosis of human hepatocellular carcinoma cells. Am J Transl Res. 2015 Jan 19;7(1):100-10. PubMed, PubMedCentral
  50. Backer MV, Backer JM, Chinnaiyan P. Targeting the unfolded protein response in cancer therapy. Methods Enzymol. 2011;491:37-56. PubMed, CrossRef
  51. Johnson GG, White MC, Grimaldi M. Stressed to death: targeting endoplasmic reticulum stress response induced apoptosis in gliomas. Curr Pharm Des. 2011;17(3):284-92. Review. PubMed, PubMedCentral

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.