Ukr.Biochem.J. 2018; Том 90, № 2, березень-квітень, c. 25-32

doi: https://doi.org/10.15407/ubj90.02.025

Evaluation of antiproliferative activity of pyrazolothiazolopyrimidine derivatives

N. S. Finiuk1,2, Yu. V. Ostapiuk2, V. P. Hreniukh2, Ya. R. Shalai2,
V. S. Matiychuk2, M. D. Obushak2, R.S. Stoika1*, A. M. Babsky2**

1Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
2Ivan Franko National University of Lviv, Ukraine;
*e-mail: stoika@cellbiol.lviv.ua; **e-mail: andriy.babsky@lnu.edu.ua

The research aim was to test cytotoxic effects in vitro of seven novel pyrazolothiazolopyrimidine derivatives in targeting several lines of tumor and pseudo-normal mammalian cells. We demonstrated that cytotoxic effects of these derivatives depended on the tissue origin of targeted cells. Leukemia cells were found to be the most sensitive to the action of compounds 2 and 7. Compound 2 demonstrated approximately two times higher toxicity towards the multidrug-resistant sub-line of HL-60/ADR cells compared to the Doxorubicin effect. Antiproliferative action of compounds 2 and 7 dropped in the order: leukemia > melanoma > hepatocarcinoma > glioblastoma > colon carcinoma > breast and ovarian carcinoma cells. These compounds were less toxic than Doxorubicin towards the non-tumor cells. The novel pyrazolothiazolopyrimidine, compound 2, demonstrated high toxicity towards human leukemia and, of special importance, towards multidrug-resistant leukemia cells, and low toxicity towards pseudo-normal cells.

Ключові слова: , ,


Посилання:

  1. Kamba SA, Ismail M, Hussein-Al-Ali SH, Ibrahim TA, Zakaria ZA. In vitro delivery and controlled release of Doxorubicin for targeting osteosarcoma bone cancer. Molecules. 2013 Aug 30;18(9):10580-98. PubMed, CrossRef
  2. Rajak H, Veerasamy R, Kumar Gupta A, Dhar Kharya M, Mishra P. Synthesis, characterization and biological evaluation of some novel 2,5-disubstituted 1,3,4-thiadiazoles for their potential antimicrobial activity. Dig J Nanomater Bios. 2009;4(3):443-451.
  3. Singla P, Luxami V, Singh R, Tandon V, Paul K. Novel pyrazolo[3,4-d]pyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: Synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin studies. Eur J Med Chem. 2017 Jan 27;126:24-35. PubMed, CrossRef
  4. Nagender P, Malla Reddy G, Naresh Kumar R, Poornachandra Y, Ganesh Kumar C, Narsaiah B. Synthesis, cytotoxicity, antimicrobial and anti-biofilm activities of novel pyrazolo[3,4-b]pyridine and pyrimidine functionalized 1,2,3-triazole derivatives. Bioorg Med Chem Lett. 2014 Jul 1;24(13):2905-8.  PubMed, CrossRefpyridine derivatives. Org Biomol Chem. 2012 Jan 28;10(4):724-8. PubMed, CrossRef
  5. De Clercq E. Recent highlights in the development of new antiviral drugs. Curr Opin Microbiol. 2005 Oct;8(5):552-60. PubMed, CrossRef, CrossRef
  6. de Mello H, Echevarria A, Bernardino AM, Canto-Cavalheiro M, Leon LL. Antileishmanial pyrazolopyridine derivatives: synthesis and structure-activity relationship analysis. J Med Chem. 2004 Oct 21;47(22):5427-32. PubMed, CrossRef
  7. Khobragade CN, Bodade RG, Dawane BS, Konda SG, Khandare NT. Synthesis and biological activity of pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one derivatives: in silico approach. J Enzyme Inhib Med Chem. 2010 Oct;25(5):615-21.  PubMed, CrossRef
  8. Redenti S, Ciancetta A, Pastorin G, Cacciari B, Moro S, Spalluto G, Federico S. Pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines and Structurally Simplified Analogs. Chemistry and SAR Profile as Adenosine Receptor Antagonists. Curr Top Med Chem. 2016;16(28):3224-3257. PubMed, CrossRef
  9. Baraldi PG, Saponaro G, Aghazadeh Tabrizi M, Baraldi S, Romagnoli R, Moorman AR, Varani K, Borea PA, Preti D. Pyrrolo- and pyrazolo-[3,4-e][1,2,4]triazolo[1,5-c]pyrimidines as adenosine receptor antagonists. Bioorg Med Chem. 2012 Jan 15;20(2):1046-59. PubMed, CrossRef
  10. Sidique S, Ardecky R, Su Y, Narisawa S, Brown B, Millán JL, Sergienko E, Cosford ND. Design and synthesis of pyrazole derivatives as potent and selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). Bioorg Med Chem Lett. 2009 Jan 1;19(1):222-5. PubMed, PubMedCentral, CrossRef
  11. Song XJ, Shao Y, Dong XG. Microwave-assisted synthesis of some novel fluorinated pyrazolo[3,4-d]pyrimidine derivatives containing 1,3,4-thiadiazole as potential antitumor agents. Chin Chem Lett. 2011;22(9):1036-1038. CrossRef
  12. Rahmouni A, Souiei S, Belkacem MA, Romdhane A, Bouajila J, Ben Jannet H. Synthesis and biological evaluation of novel pyrazolopyrimidines derivatives as anticancer and anti-5-lipoxygenase agents. Bioorg Chem. 2016 Jun;66:160-8.  PubMed, CrossRef
  13. Kurumurthy C, Veeraswamy B, Sambasiva Rao P, Santhosh Kumar G, Shanthan Rao P, Loka Reddy V, Venkateswara Rao J, Narsaiah B. Synthesis of novel 1,2,3-triazole tagged pyrazolo[3,4-b]pyridine derivatives and their cytotoxic activity. Bioorg Med Chem Lett. 2014 Feb 1;24(3):746-9.  PubMed, CrossRef
  14. Kandeel MM, Refaat HM, Kassab AE, Shahin IG, Abdelghany TM. Synthesis, anticancer activity and effects on cell cycle profile and apoptosis of novel thieno[2,3-d]pyrimidine and thieno[3,2-e] triazolo[4,3-c]pyrimidine derivatives. Eur J Med Chem. 2015 Jan 27;90:620-32.  PubMed, CrossRef
  15. Nagender P, Naresh Kumar R, Malla Reddy G, Krishna Swaroop D, Poornachandra Y, Ganesh Kumar C, Narsaiah B. Synthesis of novel hydrazone and azole functionalized pyrazolo[3,4-b]pyridine derivatives as promising anticancer agents. Bioorg Med Chem Lett. 2016 Sep 15;26(18):4427-4432.  PubMed, CrossRef
  16. Shamroukh AH, Rashad AE, Abdel-Megeid RE, Ali HS, Ali MM. Some pyrazole and pyrazolo[3,4-d]pyrimidine derivatives: synthesis and anticancer evaluation. Arch Pharm (Weinheim). 2014 Aug;347(8):559-65.  PubMed, CrossRef
  17. Ismail, Kuthati B, Thalari G, Bommarapu V, Mulakayala C, Chitta SK, Mulakayala N. Synthesis of novel spiro[pyrazolo[4,3-d]pyrimidinones and spiro[benzo[4,5]thieno[2,3-d]pyrimidine-2,3′-indoline]-2′,4(3H)-diones and their evaluation for anticancer activity. Bioorg Med Chem Lett. 2017;27(6):1446-1450.   CrossRef
  18. Cicenas J, Kalyan K, Sorokinas A, Stankunas E, Levy J, Meskinyte I, Stankevicius V, Kaupinis A, Valius M. Roscovitine in cancer and other diseases. Ann Transl Med. 2015 Jun;3(10):135. PubMed, PubMedCentral
  19. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013 Feb;65(2):157-70.  PubMed, CrossRef
  20. Gratia S, Kay L, Potenza L, Seffouh A, Novel-Chaté V, Schnebelen C, Sestili P, Schlattner U, Tokarska-Schlattner M. Inhibition of AMPK signalling by doxorubicin: at the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovasc Res. 2012 Aug 1;95(3):290-9.  PubMed, CrossRef
  21. Liu J, Mao W, Ding B, Liang CS. ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H1956-65. PubMed, PubMedCentral, CrossRef
  22. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267-85.  PubMed, CrossRef
  23. Finiuk NS, Hreniuh VP, Ostapiuk YuV, Matiychuk VS, Frolov DA, Obushak MD, Stoika RS, Babsky AM. Antineoplastic activity of novel thiazole derivatives. Biopolym Cell. 2017;33(2):135-146. CrossRef
  24. Senkiv J, Finiuk N, Kaminskyy D, Havrylyuk D, Wojtyra M, Kril I, Gzella A, Stoika R, Lesyk R. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. Eur J Med Chem. 2016 Jul 19;117:33-46. PubMed, CrossRef
  25. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011 Jul;21(7):440-6. PubMed, PubMedCentral, CrossRef
  26. Yang F, Teves SS, Kemp CJ, Henikoff S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta. 2014 Jan;1845(1):84-9.  PubMed, PubMedCentral, CrossRef
  27. Wu CH, Rastegar M, Gordon J, Safa AR. β2-microglobulin induces apoptosis in HL-60 human leukemia cell line and its multidrug resistant variants overexpressing MRP1 but lacking Bax or overexpressing P-glycoprotein. Oncogene. 2001 Oct 25;20(48):7006-20. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.