Ukr.Biochem.J. 2024; Том 96, № 5, вересень-жовтень, c. 55-64

doi: https://doi.org/10.15407/ubj96.05.055

Вплив паління електронних сигарет (вейпінг) на рівень гормонів щитоподібної залози та ліпідний профіль у чоловіків

N. Hasan1, N. A. Nasser2, A. D. Hussein3, O. A. Mohsein4,5*

1Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq;
2College of Medicine, Al-Nahrain University, Baghdad, Iraq;
3Departement of Applied Chemistry, College of Applied Science,
University of Fallujah, Fallujah, Iraq;
4Department of Medical Laboratory Techniques,
Mazaya University College, Nasiriyah, Iraq;
5Central Laboratory Department, Thi-Qar Health Directorate,
Al Habbobi Teaching Hospital, Thi-Qar, Iraq;
*e-mail: osamaakram889@gmail.com

Отримано: 01 травня 2024; Виправлено: 18 червня 2024;
Затверджено: 07 жовтня 2024; Доступно онлайн: 28 жовтня 2024

Останнім часом ринок швидко насичується привабливими для молоді пристроями для вейпінгу, які мають різноманітні смаки і форми. Відомо, що паління традиційних і електронних сигарет впливає на метаболічні процеси, а саме порушує продукування гормонів підвищує ризики розвитку захворювань легенів, серця та нирок. Мета дослідження – оцінити рівень гормонів щитоподібної залози та ліпідів у крові молодих чоловіків, які палили традиційні або електронні сигарети. У дослідженні випадок-контроль брали участь 200 чоловіків у віці 24-25 років, які палили 5-7 годин на день та 50 здорових чоловіків, які не палили (контрольна група). Чоловіків, які палили було розподілено на дві групи (100 осіб, які палили електронні сигарети, та 100 осіб, які палили традиційні сигарети). Рівні тиреоїд-стимулюючого гормону (TSH), вільного тироксину (FT4) і вільного трийодтироніну (FT3) вимірювали за допомогою COBAS E411. Загальний холестерол, ТГ, ЛПНЩ і ЛПВЩ визначали спектрофотометрично. Нами не було виявлено значних змін у рівні гормонів щитоподібної залози та ліпідних профілях, за винятком підвищеного вмісту ТГ у групі курців традиційних сигарет порівняно з контрольною групою. У той же час, у крові курців електронних сигарет було встановлено підвищення FT3 і FT4 та значне зниження рівня TSH, а також підвищений вміст загального холестерину, ТГ і ЛПНЩ порівняно з контрольною групою. Зроб­лено висновок, що паління електронних сигарет впливає на функцію щитоподібної залози та ліпідний обмін.

Ключові слова: , , ,


Посилання:

  1. Jenssen BP, Walley SC, AAP SECTION ON TOBACCO CONTROL. E-Cigarettes and Similar Devices. Pediatrics. 2019;143(2):e20183652. PubMed, PubMedCentral, CrossRef
  2. Krishnan-Sarin S, Morean M, Kong G, Bold KW, Camenga DR, Cavallo DA, Simon P, Wu R. E-Cigarettes and “Dripping” Among High-School Youth. Pediatrics. 2017;139(3):e20163224. PubMed, PubMedCentral, CrossRef
  3. Leventhal AM, Strong DR, Kirkpatrick MG, Unger JB, Sussman S, Riggs NR, Stone MD, Khoddam R, Samet JM, Audrain-McGovern J. Association of Electronic Cigarette Use With Initiation of Combustible Tobacco Product Smoking in Early Adolescence. JAMA. 2015;314(7):700-707. PubMed, PubMedCentral, CrossRef
  4. Bold KW, Kong G, Camenga DR, Simon P, Cavallo DA, Morean ME, Krishnan-Sarin S. Trajectories of E-Cigarette and Conventional Cigarette Use Among Youth. Pediatrics. 2018;141(1):e20171832. PubMed, PubMedCentral, CrossRef
  5. Chaffee BW, Watkins SL, Glantz SA. Electronic Cigarette Use and Progression From Experimentation to Established Smoking. Pediatrics. 2018;141(4):e20173594. PubMed, PubMedCentral, CrossRef
  6. Kulik MC, Lisha NE, Glantz SA. E-cigarettes Associated With Depressed Smoking Cessation: A Cross-sectional Study of 28 European Union Countries. Am J Prev Med. 2018;54(4):603-609. PubMed, PubMedCentral, CrossRef
  7. Gordon T, Karey E, Rebuli ME, Escobar YH, Jaspers I, Chen LC. E-Cigarette Toxicology. Annu Rev Pharmacol Toxicol. 2022;62:301-322. PubMed, PubMedCentral, CrossRef
  8. Tehrani MW, Newmeyer MN, Rule AM, Prasse C. Characterizing the Chemical Landscape in Commercial E-Cigarette Liquids and Aerosols by Liquid Chromatography-High-Resolution Mass Spectrometry. Chem Res Toxicol. 2021;34(10):2216-2226. PubMed, PubMedCentral, CrossRef
  9. Kocełak P, Owczarek AJ, Wikarek A, Ogarek N, Oboza P, Sieja M, Szyszka A, Rozmus-Rogóż I, Puzianowska-Kuźnicka M, Olszanecka-Glinianowicz M, Chudek J. Anti-thyroid antibodies in the relation to TSH levels and family history of thyroid diseases in young Caucasian women. Front Endocrinol (Lausanne). 2022;13:1081157. PubMed, PubMedCentral, CrossRef
  10. Khan SR, Peeters RP, van Hagen PM, Dalm V, Chaker L. Determinants and Clinical Implications of Thyroid Peroxidase Antibodies in Middle-Aged and Elderly Individuals: The Rotterdam Study. Thyroid. 2022;32(1):78-89. PubMed, CrossRef
  11. Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, Okosieme OE. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018;14(5):301-316. PubMed, CrossRef
  12. Åsvold BO, Vatten LJ, Bjøro T, Bauer DC, Bremner A, Cappola AR, Ceresini G, den Elzen WP, Ferrucci L, Franco OH, Franklyn JA, Gussekloo J, Iervasi G, Imaizumi M, Kearney PM, Khaw KT, Maciel RM, Newman AB, Peeters RP, Psaty BM, Razvi S, Sgarbi JA, Stott DJ, Trompet S, Vanderpump MP, Völzke H, Walsh JP, Westendorp RG, Rodondi N. Thyroid function within the normal range and risk of coronary heart disease: an individual participant data analysis of 14 cohorts. JAMA Intern Med. 2015;175(6):1037-1047. PubMed, PubMedCentral, CrossRef
  13. Yu N, Wang L, Zeng Y, Zhao Y, Chen S, Pan H, Gong F, Zhu H. The Association of Thyroid Hormones with Coronary Atherosclerotic Severity in Euthyroid Patients. Horm Metab Res. 2022;54(1):12-19. PubMed, CrossRef
  14. van Tienhoven-Wind LJN, Gruppen EG, Sluiter WJ, Bakker SJL, Dullaart RPF. Life expectancy is unaffected by thyroid function parameters in euthyroid subjects: The PREVEND cohort study. Eur J Intern Med. 2017;46:e36-e39. PubMed, CrossRef
  15.  Majeed MA, Al-Ali ZAR. Effect of Smoking on Blood Parameters and Thyroid Hormones in Men with Polycythemia. Rafidain J Sci. 2024;33(2 E):14-23.
  16. Sezgin Y, Becel S, Polat A. Evaluation of Serum Biochemical Parameters Primarily Liver Functions in Smokers: A Case-control Study. Gümüşhane Üniv Sağlık Bilimleri Derg. 2024;13(3):1125-1131. CrossRef
  17. Alshantti R, Rafat U, Alkhaurri B, Barsano CP, Siddiqui M. SAT496 Tobacco Smoking May Mimic Subclinical Hyperthyroidism. J Endocr Soc. 2023;7(Suppl 1):bvad114-1969. CrossRef
  18. Gruppen EG, Kootstra-Ros J, Kobold AM, Connelly MA, Touw D, Bos JHJ, Hak E, Links TP, Bakker SJL, Dullaart RPF. Cigarette smoking is associated with higher thyroid hormone and lower TSH levels: the PREVEND study. Endocrine. 2020;67(3):613-622. PubMed, PubMedCentral, CrossRef
  19. Lee JH, Chai YJ, Yi KH. Effect of Cigarette Smoking on Thyroid Cancer: Meta-Analysis. Endocrinol Metab (Seoul). 2021;36(3):590-598. PubMed, PubMedCentral, CrossRef
  20. Dameri M, Cirmena G, Ravera F, Ferrando L, Cuccarolo P, Stabile M, Fanelli GN, Nuzzo PV, Calabrese M, Tagliafico A, Ballestrero A, Zoppoli G. Standard Operating Procedures (SOPs) for non-invasive multiple biomarkers detection in an academic setting: A critical review of the literature for the RENOVATE study protocol. Crit Rev Oncol Hematol. 2023;185:103963. PubMed, CrossRef
  21. Mas-Bargues C, Escrivá C, Dromant M, Borrás C, Viña J. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch Biochem Biophys. 2021;709:108941. PubMed, CrossRef
  22. Reed Larsen P, Kronenberg HM, Melmed S, Polonsky KS, Melmed S. Williams Textbook of Endocrinology. 12th ed. Philadelphia: Saunders Elsevier; 2011. Chapter 10. p. 301-311.
  23. Husain MJ, Datta BK, Nargis N, Iglesias R, Perucic AM, Ahluwalia IB, Tripp A, Fatehin S, Husain MM, Kostova D, Richter P. Revisiting the association between worldwide implementation of the MPOWER package and smoking prevalence, 2008-2017. Tob Control. 2021;30(6):630-637. PubMed, PubMedCentral, CrossRef
  24. Oudah MK. Study the prevalence of smoking phenomenon among institute students at the city of Nasiriya/Iraq. Sys Rev Pharm. 2020;11(10):976-980.
  25. Kadkhodazadeh H, Amouzegar A, Mehran L, Gharibzadeh S, Azizi F, Tohidi M. Smoking status and changes in thyroid-stimulating hormone and free thyroxine levels during a decade of follow-up: The Tehran thyroid study. Caspian J Intern Med. 2020;11(1):47-52. PubMed, PubMedCentral, CrossRef
  26. Sawicka-Gutaj N, Gutaj P, Sowiński J, Wender-Ożegowska E, Czarnywojtek A, Brązert J, Ruchała M. Influence of cigarette smoking on thyroid gland–an update. Endokrynol Pol. 2014;65(1):54-62. PubMed, CrossRef
  27. Karimi S, Nouri H, Mahmoudinejad-Azar S, Abtahi SH. Smoking and environmental tobacco smoke exposure: implications in ocular disorders. Cutan Ocul Toxicol. 2023;42(1):1-7. PubMed, CrossRef
  28. Belin RM, Astor BC, Powe NR, Ladenson PW. Smoke exposure is associated with a lower prevalence of serum thyroid autoantibodies and thyrotropin concentration elevation and a higher prevalence of mild thyrotropin concentration suppression in the third National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2004;89(12):6077-6086. PubMed, CrossRef
  29. Soldin OP, Goughenour BE, Gilbert SZ, Landy HJ, Soldin SJ. Thyroid hormone levels associated with active and passive cigarette smoking. Thyroid. 2009;19(8):817-823. PubMed, PubMedCentral, CrossRef
  30. Chen X, Wang JJ, Yu L, Wang HY, Sun H. The association between BMI, smoking, drinking and thyroid disease: a cross-sectional study in Wuhan, China. BMC Endocr Disord. 2021;21(1):184. PubMed, PubMedCentral, CrossRef
  31. Wu K, Zhou Y, Ke S, Huang J, Gao X, Li B, Lin X, Liu X, Liu X, Ma L, Wang L, Wu L, Wu L, Xie C, Xu J, Wang Y, Liu L. Lifestyle is associated with thyroid function in subclinical hypothyroidism: a cross-sectional study. BMC Endocr Disord. 2021;21(1):112. PubMed, PubMedCentral, CrossRef
  32. Salman AG, Mahdi IAJ, Mukhlef AK, Mohammad RAS, Zaghir MSH, Wadaa’a NM. Physiological aspects of thyroid disorders: Anatomy, Hormones, Diagnosis and Management. Cur Clin Med Edu. 2024; 2(5):17-32.
  33. Oeverhaus M, Winkler L, Stähr K, Daser A, Bechrakis N, Stöhr M, Chen Y, Eckstein A. Influence of biological sex, age and smoking on Graves’ orbitopathy – a ten-year tertiary referral center analysis. Front Endocrinol (Lausanne). 2023;14:1160172. PubMed, PubMedCentral, CrossRef
  34. Figus FA, Piga M, Azzolin I, McConnell R, Iagnocco A. Rheumatoid arthritis: Extra-articular manifestations and comorbidities. Autoimmun Rev. 2021;20(4):102776. PubMed, CrossRef
  35. John BV, Aitcheson G, Schwartz KB, Khakoo NS, Dahman B, Deng Y, Goldberg D, Martin P, Taddei TH, Levy C, Kaplan DE. Male Sex Is Associated With Higher Rates of Liver-Related Mortality in Primary Biliary Cholangitis and Cirrhosis. Hepatology. 2021;74(2):879-891. PubMed, CrossRef
  36. Mehran L, Amouzgar A, Delshad H, Azizi F. The association of cigarette smoking with serum TSH concentration and thyroperoxidase antibody. Exp Clin Endocrinol Diabetes. 2012;120(2):80-83. PubMed, CrossRef
  37. Farebrother J, Zimmermann MB, Andersson M. Excess iodine intake: sources, assessment, and effects on thyroid function. Ann N Y Acad Sci. 2019;1446(1):44-65. PubMed, CrossRef
  38. Jain RB, Ducatman A. Associations between smoking and lipid/lipoprotein concentrations among US adults aged ≥20 years. J Circ Biomark. 2018;7:1849454418779310. PubMed, PubMedCentral, CrossRef
  39. Orimoloye OA, Uddin SMI, Chen LC, Osei AD, Mirbolouk M, Malovichko MV, Sithu ID, Dzaye O, Conklin DJ, Srivastava S, Blaha MJ. Electronic cigarettes and insulin resistance in animals and humans: Results of a controlled animal study and the National Health and Nutrition Examination Survey (NHANES 2013-2016). PLoS One. 2019;14(12):e0226744. PubMed, PubMedCentral, CrossRef
  40. Middlekauff HR, William KJ, Su B, Haptonstall K, Araujo JA, Wu X, Kim J, Sallam T. Changes in lipid composition associated with electronic cigarette use. J Transl Med. 2020;18(1):379. PubMed, PubMedCentral, CrossRef
  41. Kim T, Choi H, Kang J, Kim J. Association between electronic cigarette use and metabolic syndrome in the Korean general population: A nationwide population-based study. PLoS One. 2020;15(8):e0237983. PubMed, PubMedCentral, CrossRef
  42. Kamstrup PR. Lipoprotein(a) and Cardiovascular Disease. Clin Chem. 2021;67(1):154-166. PubMed, CrossRef
  43. Gepner AD, Piper ME, Johnson HM, Fiore MC, Baker TB, Stein JH. Effects of smoking and smoking cessation on lipids and lipoproteins: outcomes from a randomized clinical trial. Am Heart J. 2011;161(1):145-151. PubMed, PubMedCentral, CrossRef
  44. Benowitz NL, Burbank AD. Cardiovascular toxicity of nicotine: Implications for electronic cigarette use. Trends Cardiovasc Med. 2016;26(6):515-523. PubMed, PubMedCentral, CrossRef
  45. Madison MC, Landers CT, Gu BH, Chang CY, Tung HY, You R, Hong MJ, Baghaei N, Song LZ, Porter P, Putluri N, Salas R, Gilbert BE, Levental I, Campen MJ, Corry DB, Kheradmand F. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J Clin Invest. 2019;129(10):4290-4304. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.