Ukr.Biochem.J. 2014; Том 86, №2, березень-квітень, c. 16-25

doi: http://dx.doi.org/10.15407/ubj86.02.016

Механізми транспортування електронів на нерозчинний термінальний акцептор у хемоорганотрофних бактерій

І. А. Самаруха

Національний технічний університет України «Київський політехнічний інститут», Київ;
e-mail: iryna.samarukha@gmail.com

В огляді узагальнено механізми передачі електронів на нерозчинний термінальний акцептор (анод) асоціацією хемоорганотрофних бактерій в біоелектрохімічних системах, які не є взаємовиключними. Вони поділяються на механізми: з використанням сполук-медіаторів електронного переносу; опосередкованої передачі електронів за допомогою проміжних продуктів метаболізму і прямої передачі електронів із поверхні клітини. Так, медіаторами електронного переносу слугують штучні або синтезовані бактеріями рибофлавін і похідні феназину, які також обумовлюють здатність бактерій до антагонізму. У механізмах опосередкованої передачі електронів за допомогою проміжних продуктів метаболізму, якими є низькомолекулярні карбонові кислоти, спирти, водень та ін., задіяні мікроорганізми з гідролітичною, кислотогенною та екзоелектрогенною активністю. Пряма передача електронів на нерозчинний анод можлива за рахунок мембранних структур (цито­хроми, пілі та ін.). Асоціація мікроорганізмів, а, отже, й біохімічні механізми передачі електронів, залежать від походження інокуляту, субстрату, інтенсивності масообміну, умов аерації, потенціалів і розташування електродів та інших чинників, що визначаються технологічними і конструктивними біотехнологічними параметрами продукування електричної енергії.

Ключові слова: , , ,


Посилання:

  1. Lovley DR. Organic matter mineralization with the reduction of ferric iron. Geomicrobiol J. 1987 Jan;5(3-4):375-399. CrossRef
  2. Potter MC. Electrical effects accompanying the decomposition of organic compounds. Proc Royal Soc B Biol Sci. 1911;84(571):260-276. CrossRef
  3. Davis JB, Yarbrough HF Jr. Preliminary Experiments on a Microbial Fuel Cell. Science. 1962 Aug 24;137(3530):615-6. PubMed, CrossRef
  4. Pat. US3331848 (A) Microbial oxygenated fuel cell. Davis J. B., Yarbrough H. F. Publ. 18.07.1967.
  5. Kuzminskiy Y, Shchurska K, Samarukha I, Łagód G. Different types of energy conversion for biohydrogen production processes. Proc. ECOpole. 2011;5(2):389-394.
  6. Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol Adv. 2007 Sep-Oct;25(5):464-82. Review. PubMed, CrossRef
  7. Zhukova V, Sabliy L, Łagód G. Biotechnology of the food industry wastewater treatment from nitrogen compounds. Proc ECOpole. 2011;5(1):133-138.
  8. Kuzminskiy EV, Shchurska KO, Samarukha IA. Bioelectrochemical production electricity and hydrogen. K.: Komp’yuterpres, 2012. 230 p.
  9. Kuzminskiy EV, Gvozdyak PI, Golub NB. Biofual elements – the problems and perspectives of development. II. Microbial fuel elements. Microbiol Biotechnol. 2009;(1(5)):6-22.
  10. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006 Sep 1;40(17):5181-92. Review. PubMed, CrossRef
  11. Franks AE, Nevin KP. Microbial fuel cells, a current review. Energies. 2010;3(5):899-919. CrossRef
  12. Liu H, Cheng S, Logan BE. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol. 2005 Jan 15;39(2):658-62. PubMed, CrossRef
  13. Niessen J, Harnisch F, Rosenbaum M, Schröder U, Scholz F. Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun. 2006;8(5):869-873. CrossRef
  14. Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng. 2007 Aug 15;97(6):1398-407. PubMed, CrossRef
  15. Heilmann J, Logan BE. Production of electricity from proteins using a microbial fuel cell. Water Environ Res. 2006 May;78(5):531-7. PubMed, CrossRef
  16. Rosenbaum M, Zhao F, Schröder U, Scholz F. Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. Angew Chem Int Ed Engl. 2006 Oct 13;45(40):6658-61. PubMed, CrossRef
  17. Bagotsky VS. Fundamentals of Electrochemistry. M.: Khimiya, 1988. 400 p.
  18. Newman J. S. Electrochemical systems, 3rd edition. NJ.: Prentice-Hall, 1973. 672 p.
  19. Park DH, Zeikus JG. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol. 1999 Apr;181(8):2403-10. PubMed, PubMedCentral
  20. Park DH, Zeikus JG. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol. 2000 Apr;66(4):1292-7. PubMed, PubMedCentral, CrossRef
  21. Kim CH, Kristjansson JK, White MM, Hollocher TC. Benzyl viologen cation radical: first example of a perfectly selective anion ionophore of the carrier type. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1126-30. PubMed, CrossRef
  22. Park DH, Kim BH, Moore B, Hill HAO, Song MK, Rhee HW. Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds. Biotechnol Tech. 1997 March; 11(3):145-148.
  23. Tanaka K., Kashiwagi N., Ogawa T. Effects of light on the electrical output of bioelectrochemia fuel-cells containing Anabaena variabilis M-2 mechanisms of the post-illumination burst. J Chem Tech Biotechnol. 1988;42(3):235-240. CrossRef
  24. Kuzminsky EV, Golub NB, Lesko IV, Samarukha IA. Applying of microorganisms to generate an electricity in the microbial biofuel cell. Vidnovlyuvana Energetyka. 2008;(3):82-97.
  25. Kuzminsky EV, Golub NB, Samarukha IA. Tez. dokl. uchastnikov konf. “Energiya iz biomassyi” [Elektronniy resurs]. Kiev, Ukraine, 2008.
  26. Ren Z, Ward TE, Regan JM. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol. 2007 Jul 1;41(13):4781-6. PubMed, CrossRef
  27. Jain A, Connolly JO, Woolley R., Krishnamurthy S., Marsili E. Extracellular electron transfer mechanism in Shewanella loihica PV- 4 biofilms formed at indium tin oxide and graphite electrodes. Int J Electrochem Sci. 2013;8:1778–1793.
  28. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA. 2008 Mar 11;105(10):3968-73. PubMed, PubMedCentral, CrossRef
  29. Pham TH, Boon N, De Maeyer K, Höfte M, Rabaey K, Verstraete W. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl Microbiol Biotechnol. 2008 Oct;80(6):985-93. PubMed, CrossRef
  30. Palchykovska LG, Alexeeva IV, Kostina VG, Platonov MO, Negrutska VV, Deriabin OM, Tarasov OA, Shved AD. New amides of phenazine-1-carboxylic acid: antimicrobial activity and structure-activity relationship. Ukr Biokhim Zhurn. 2008 May-Jun;80(3):140-7. Ukrainian. PubMed
  31. Mahadevan R, Bond DR, Butler JE, Esteve-Nuñez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol. 2006 Feb;72(2):1558-68. PubMed, PubMedCentral, CrossRef
  32. Methé BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science. 2003 Dec 12;302(5652):1967-9. PubMed, CrossRef
  33. Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, Palsson BO. Metabolic modeling of microbial strains in silico. Trends Biochem Sci. 2001 Mar;26(3):179-86. Review. PubMed, CrossRef
  34. Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M. LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res. 2002 Jan 1;30(1):402-4. PubMed, PubMedCentral, CrossRef
  35. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D277-80. PubMed, PubMed, CrossRef
  36. Ren Z, Ward TE, Regan JM. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol. 2007 Jul 1;41(13):4781-6. PubMed, CrossRef
  37. Shi L, Squier TC, Zachara JM, Fredrickson JK. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol. 2007 Jul;65(1):12-20. Review. PubMed, PubMedCentral, CrossRef
  38. Leys D, Scrutton NS. Electrical circuitry in biology: emerging principles from protein structure. Curr Opin Struct Biol. 2004 Dec;14(6):642-7. Review. PubMed
    CrossRef
  39. Stevens JM, Daltrop O, Allen JW, Ferguson SJ. C-type cytochrome formation: chemical and biological enigmas. Acc Chem Res. 2004 Dec;37(12):999-1007. Review. PubMed, CrossRef
  40. Rodrigues ML, Oliveira TF, Pereira IA, Archer M. X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination. EMBO J. 2006 Dec 13;25(24):5951-60. PubMed, PubMedCentral, CrossRef
  41. Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol. 2004 May;22(5):554-9. PubMed
  42. Mowat CG, Chapman SK. Multi-heme cytochromes–new structures, new chemistry. Dalton Trans. 2005 Nov 7;(21):3381-9. PubMedCrossRef
  43. Myers CR, Myers JM. MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Appl Environ Microbiol. 2002 Nov;68(11):5585-94. PubMed, PubMedCentral, CrossRef
  44. Myers CR, Myers JM. Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1. Lett Appl Microbiol. 2003;37(3):254-8. PubMed, CrossRef
  45. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature. 2005 Jun 23;435(7045):1098-101. PubMed, CrossRef
  46. Lovley DR. Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol. 2006 Jul;4(7):497-508. Review. PubMedCrossRef
  47. Shi L, Squier TC, Zachara JM, Fredrickson JK. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol. 2007 Jul;65(1):12-20. Review. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.