Ukr.Biochem.J. 2013; Том 85, № 1, січень-лютий, c. 51-61

doi: http://dx.doi.org/10.15407/ubj85.01.051

Біохімічні ефекти комбінованої дії γ-опромінення та паклітакселу на клітини анапластичного раку щитовидної залози

В. М. Пушкарьов, О. І. Ковзун, В. В. Пушкарьов, М. Д. Тронько

ДУ «Інститут ендокринології та обміну речовин
ім. В. П. Комісаренка НАМН України», Київ;
e-mail: pushkarev.vm@gmail.com

Метою роботи було вивчення біохімічних ефектів паклітакселу (Ptx), γ-опромінення (IR) та їх комбінації в клітинах недиференційованого раку щитовидної залози (АТС). IR активує звичайні за пошкодження ДНК сигнальні механізми і виявляє певний мітогенний ефект шляхом інактивації протеїну ретинобластоми (pRb). Спостерігається виражений антагонізм між Ptx і IR щодо регуляторів клітинного циклу – пухлинного супресора p53, pRb, CHK2 та c-Abl, а також експресії проапоптичного протеїну Bax. Цитотоксичність Ptx є помітно вищою порівняно з генотоксичним ефектом IR, але спільна дія обох агентів посилює активацію каспази-3 та, особливо, каспази-8. Ptx в низьких (1–25 нМ) концентраціях спричинює помітний радіопротекторний ефект.
Таким чином, в клітинах АТС спостерігали конкурентні взаємовідношення між IR і Ptx щодо фосфорилювання протеїнів, що контролюють клітинний цикл: p53, pRb, cAbl та експресії Bax. Водночас, комбінований вплив IR і Ptx посилює фосфорилювання антиапоптозного протеїну Bcl-2 та експресію інгібітора апоптозу – сурвайвіну. Підсумковий ефект цих подій можна розглядати як антиапоптотичний – у присутності Ptx цитотоксичність IR послаблюється.

Ключові слова: , , , ,


Посилання:

  1. Rowinsky EK. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med. 1997;48(1):353-74. Review. PubMed, CrossRef
  2. Kingston DG. The shape of things to come: structural and synthetic studies of taxol and related compounds. Phytochemistry. 2007 Jul;68(14):1844-54. Review. PubMed, PubMedCentral, CrossRef
  3. Pushkarev VM, Starenki DV, Saenko VO, Tronko MD, Yamashita S. Effects of Paclitaxel and combination of the drug with radiation therapy in an in vivo model of anaplastic thyroid carcinoma. Exp Oncol. 2011 Mar;33(1):24-7. PubMed
  4. Freshney RI. Culture of animal cells, a manual of basic techniques. 5th ed. Hoboken NJ, John Wiley & Sons, 2005. 746 p.
  5. Henningsson A, Karlsson MO, Viganò L, Gianni L, Verweij J, Sparreboom A. Mechanism-based pharmacokinetic model for paclitaxel. J Clin Oncol. 2001 Oct 15;19(20):4065-73. PubMed
  6. Marchetti P, Urien S, Cappellini GA, Ronzino G, Ficorella C. Weekly administration of paclitaxel: theoretical and clinical basis. Crit Rev Oncol Hematol. 2002 Dec 27;44 Suppl:S3-13. Review. PubMed, CrossRef
  7. Pushkarev VM, Starenki DV, Saenko VA, Namba H, Kurebayashi J, Tronko MD, Yamashita S. Molecular mechanisms of the effects of low concentrations of taxol in anaplastic thyroid cancer cells. Endocrinology. 2004 Jul;145(7):3143-52. PubMed, CrossRef
  8. Boldt S, Weidle UH, Kolch W. The role of MAPK pathways in the action of chemotherapeutic drugs. Carcinogenesis. 2002 Nov;23(11):1831-8. PubMed, CrossRef
  9. Levine AJ, Hu W, Feng Z. The P53 pathway: what questions remain to be explored? Cell Death Differ. 2006 Jun;13(6):1027-36. Review. PubMed, CrossRef
  10. Lalier L, Cartron PF, Juin P, Nedelkina S, Manon S, Bechinger B, Vallette FM. Bax activation and mitochondrial insertion during apoptosis. Apoptosis. 2007 May;12(5):887-96. Review. PubMed, CrossRef
  11. Sionov RV, Coen S, Goldberg Z, Berger M, Bercovich B, Ben-Neriah Y, Ciechanover A, Haupt Y. c-Abl regulates p53 levels under normal and stress conditions by preventing its nuclear export and ubiquitination. Mol Cell Biol. 2001 Sep;21(17):5869-78. PubMed, PubMedCentral, CrossRef
  12. Zuckerman V, Lenos K, Popowicz GM, Silberman I, Grossman T, Marine JC, Holak TA, Jochemsen AG, Haupt Y. c-Abl phosphorylates Hdmx and regulates its interaction with p53. J Biol Chem. 2009 Feb 6;284(6):4031-9. PubMed, CrossRef
  13. Nehmé A, Lee BL, Baskaran R, Zhang Q, Lin X, Christen RD. Effect of c-Abl tyrosine kinase on the cellular response to paclitaxel-induced microtubule damage. Br J Cancer. 2000 Nov;83(10):1360-6. PubMed, PubMedCentral
  14. Nevins JR. The Rb/E2F pathway and cancer. Hum Mol Genet. 2001 Apr;10(7):699-703. Review. PubMed, CrossRef
  15. Sears RC, Nevins JR. Signaling networks that link cell proliferation and cell fate. J Biol Chem. 2002 Apr 5;277(14):11617-20. Review. PubMed, CrossRef
  16. Pushkarev VM, Starenki DV, Saenko VA, Pushkarev VV, Kovzun OI, Tronko MD, Popadiuk ID, Yamashita S. Differential effects of low and high doses of Taxol in anaplastic thyroid cancer cells: possible implication of the Pin1 prolyl isomerase. Exp Oncol. 2008 Sep;30(3):190-4. PubMed
  17. Pan J, Xu G, Yeung SC. Cytochrome c release is upstream to activation of caspase-9, caspase-8, and caspase-3 in the enhanced apoptosis of anaplastic thyroid cancer cells induced by manumycin and paclitaxel. J Clin Endocrinol Metab. 2001 Oct;86(10):4731-40. PubMed, CrossRef
  18. Labi V, Grespi F, Baumgartner F, Villunger A. Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death Differ. 2008 Jun;15(6):977-87. Review. PubMed, CrossRef
  19. Skommer J, Wlodkowic D, Deptala A. Larger than life: Mitochondria and the Bcl-2 family. Leuk Res. 2007 Mar;31(3):277-86. Review. PubMed, CrossRef
  20. Geng F, Tang L, Li Y, Yang L, Choi KS, Kazim AL, Zhang Y. Allyl isothiocyanate arrests cancer cells in mitosis, and mitotic arrest in turn leads to apoptosis via Bcl-2 protein phosphorylation. J Biol Chem. 2011 Sep 16;286(37):32259-67. PubMed, PubMedCentral, CrossRef
  21. Zhang L, Blackwell K, Altaeva A, Shi Z, Habelhah H. TRAF2 phosphorylation promotes NF-κB-dependent gene expression and inhibits oxidative stress-induced cell death. Mol Biol Cell. 2011 Jan 1;22(1):128-40. PubMed, PubMedCentral, CrossRef
  22. Mu Z, Hachem P, Pollack A. Antisense Bcl-2 sensitizes prostate cancer cells to radiation. Prostate. 2005 Dec 1;65(4):331-40. PubMed, PubMedCentral, CrossRef
  23. Kumar P, Coltas IK, Kumar B, Chepeha DB, Bradford CR, Polverini PJ. Bcl-2 protects endothelial cells against gamma-radiation via a Raf-MEK-ERK-survivin signaling pathway that is independent of cytochrome c release. Cancer Res. 2007 Feb 1;67(3):1193-202. PubMed, CrossRef
  24. George J, Banik NL, Ray SK. Bcl-2 siRNA augments taxol mediated apoptotic death in human glioblastoma U138MG and U251MG cells. Neurochem Res. 2009 Jan;34(1):66-78. Epub 2008 Mar 21. PubMed, CrossRef
  25. Pushkarev VV, Kovzun OI, Pushkarev VM, Tronko MD. The effect of the combined action of roscovitine and Paclitaxel on the apoptotic and cell cycle regulatory mechanisms in colon and anaplastic thyroid cancer cells. ISRN Biochem. 2012 Aug 30;2012:826305. eCollection 2012. PubMed, PubMedCentral, CrossRef
  26. Sohn D, Essmann F, Schulze-Osthoff K, Jänicke RU. p21 blocks irradiation-induced apoptosis downstream of mitochondria by inhibition of cyclin-dependent kinase-mediated caspase-9 activation. Cancer Res. 2006 Dec 1;66(23):11254-62. PubMed, CrossRef
  27. Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer. 2008 Jan;8(1):61-70. Review. PubMed, CrossRef
  28. Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem. 2002 Feb 1;277(5):3247-57. PubMed, CrossRef
  29. Mirza A, McGuirk M, Hockenberry TN, Wu Q, Ashar H, Black S, Wen SF, Wang L, Kirschmeier P, Bishop WR, Nielsen LL, Pickett CB, Liu S. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene. 2002 Apr 18;21(17):2613-22. PubMed, CrossRef
  30. Raj D, Liu T, Samadashwily G, Li F, Grossman D. Survivin repression by p53, Rb and E2F2 in normal human melanocytes. Carcinogenesis. 2008 Jan;29(1):194-201. Epub 2007 Oct 4. PubMed, PubMedCentral, CrossRef
  31. Shaul Y, Ben-Yehoyada M. Role of c-Abl in the DNA damage stress response. Cell Res. 2005 Jan;15(1):33-5. Review. PubMed, CrossRef
  32. Wang X, Zeng L, Wang J, Chau JF, Lai KP, Jia D, Poonepalli A, Hande MP, Liu H, He G, He L, Li B. A positive role for c-Abl in Atm and Atr activation in DNA damage response. Cell Death Differ. 2011 Jan;18(1):5-15. PubMed, PubMedCentral, CrossRef
  33. Sui M, Dziadyk JM, Zhu X, Fan W. Cell cycle-dependent antagonistic interactions between paclitaxel and gamma-radiation in combination therapy. Clin Cancer Res. 2004 Jul 15;10(14):4848-57. PubMed, CrossRef
  34. Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I, Bosykh DA, Burdelya LG, Macklis RM, Skaliter R, Komarova EA, Gudkov AV. Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol. 2006 Sep;2(9):474-9. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.