Ukr.Biochem.J. 2013; Том 85, № 1, січень-лютий, c. 42-50

doi: http://dx.doi.org/10.15407/ubj85.01.042

Мембранотропні властивості уроканової кислоти

Н. О. Касян1, О. В. Ващенко1, Л. М. Завора1,
Д. С. Софронов2, Л. М. Лисецький1

1Інститут сцинтиляційних матеріалів НАН України, Харків;
2ДНУ НТК «Інститут монокристалів» НАН України, Харків;
e-mail: kasian@isma.kharkov.ua

Методом диференційної скануючої калориметрії (ДСК) досліджено вплив уроканової кислоти (УК) на термодинамічні параметри модельних мультибішарових мембран дипальмітоїлфосфатидилхоліну (ДПФХ). Виявлено ущільнювальну дію УК на ліпідний бішар, яка виявляється в підвищенні температури основного фазового переходу та збільшенні параметра кооперативності. Аналіз ІЧ-спектрів досліджуваних систем свідчить про локалізацію УК поблизу полярних головок ДПФХ та гідрофільно-гідрофобного інтерфейсу бішару, що можливо за рахунок електростатичних взаємодій та водневих зв’язків. З огляду на одержані експериментальні дані та геометричні параметри молекул УК і ДПФХ запропоновано варіанти розташування УК в ліпідному бішарі.

Ключові слова: , , , ,


Посилання:

  1. Gibbs NK, Tye J, Norval M. Recent advances in urocanic acid photochemistry, photobiology and photoimmunology. Photochem Photobiol Sci. 2008 Jun;7(6):655-67.  Review. PubMed, CrossRef
  2. De Fabo EC, Noonan FP. Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J Exp Med. 1983 Jul 1;158(1):84-98. PubMed, PubMedCentral, CrossRef
  3. Gibbs NK, Norval M. Urocanic acid in the skin: a mixed blessing? J Invest Dermatol. 2011 Jan;131(1):14-7. PubMed, CrossRef
  4. Hanson KM, Simon JD. The origin of the wavelength-dependent photoreactivity of trans-urocanic acid. Photochem Photobiol. 1998 May;67(5):538-40. PubMed, CrossRef
  5. Brookman J, Chacón JN, Sinclair RS. Some photophysical studies of cis- and trans-urocanic acid. Photochem Photobiol Sci. 2002 May;1(5):327-32. PubMed, CrossRef
  6. Shen L, Ji HF.  Theoretical investigation of the photosensitization mechanisms of urocanic acid. J Photochem Photobiol B. 2008 May 29;91(2-3):96-8. PubMed, CrossRef
  7. Wallis RA, Smith GJ, Dunford CL. The effect of molecular environment on the photoisomerization of urocanic acid. Photochem Photobiol. 2004 Sep-Oct;80(2):257-61. PubMed, CrossRef
  8. Jones CD, Barton AK, Crosby J, Norval M, Gibbs NK. Investigating the red shift between in vitro and in vivo urocanic acid photoisomerization action spectra. Photochem Photobiol. 1996 Mar;63(3):302-5. PubMed, CrossRef
  9. Rand AA, Barclay LR. Photo-oxidations initiated by UV radiation of urocanic acid and its methyl ester in solution, micelles, and lipid bilayers: TYPE I (free radical) or TYPE II (singlet oxygen) mechanisms depend on the medium. J Photochem Photobiol A Chem. 2009 Dec;208(2-3):79-90. CrossRef
  10. Harding CR. The stratum corneum: structure and function in health and disease. Dermatol Ther. 2004 Jan;17(Suppl 1):6-15. Review. PubMed, CrossRef
  11. Imokawa G, Kuno H, Kawai M. Stratum corneum lipids serve as a bound-water modulator. J Invest Dermatol. 1991 Jun;96(6):845-51. PubMed, CrossRef
  12. Sirieix-Plénet J, Ader JC, Miquel C, Mavon A, Lauth-de Viguerie N. Diffusion of E and Z urocanic amphiphiles through skin and their insertion in a membrane model. Skin Pharmacol Appl Skin Physiol. 2002 Nov-Dec;15(6):425-33. PubMed, CrossRef
  13. Campos AM, Cárcamo C, Silva E, García S, Lemp E, Alarcón E, Edwards AM, Günther G, Lissi E. Distribution of urocanic acid isomers between aqueous solutions and n-octanol, liposomes or bovine serum albumin. J Photochem Photobiol B. 2008 Jan 30;90(1):41-6. PubMed, CrossRef
  14. Prister BS, Borzenko VN, Lisetskiĭ LN, Panikarskaia VD, Shtifaniuk PP. Effect of radiation on the structure of model and natural biomembranes using differential scanning calorimetry. Ukr Biokhim Zhurn. 1996 Nov-Dec;68(6):76-80. Russian. PubMed
  15. Virnik KM, Panikarskaya VD, Lisetski LN, Korzovskaya OV. Thermogravimetric studies of the associated states of water in hydrated phospholipid- and DNA-based systems. Ukr Biokhim Zhurn. 1998 Sep-Oct;70(5):85-90. Russian. PubMed
  16. Korzovskaya OV, Lisetski LN, Panikarskaya VD.  Intramolecular interactions between components of biological membranes in the mesomorphic structural models. Bull Russ Acad Sci. 1998;62(8):1695-97.
  17. Lisetski LN, Vashchenko OV, Tolmachev AV, Vodolazhskiy KB. Effects of membranotropic agents on mono- and multilayer structures of dipalmitoylphosphatidylcholine. Eur Biophys J. 2002 Dec;31(7):554-8. PubMed, CrossRef
  18. Vashchenko O, Pashynska V, Kosevich M, Panikarska V, Longin Lisetski L. Lyotropic mesophase of hydrated phospholipids as model medium for studies of antimicrobial agents activity. Mol Cryst Liq Cryst. 2011;547(1):155-163. CrossRef
  19. Kasian NA, Vashchenko OV, Gluhova YaE, Lisetski LN. Effect of the vitamin D photosynthesis products on thermodynamic parameters of model lipid membranes.  Biopolym Cell. 2012;28(2):114-120. CrossRef
  20. Ivkov VG., Berestovsky GN. Dynamic Structure of Lipid Bilayer. M.: Nauka,  1981. 296 p.
  21. Antonov VF., Smirnova EYu., Shevchenko EV. Lipid membranes in phase transition.  M.: Nauka, 1992. 136 p.
  22. Smith AL. Applied Infrared Spectroscopy. M.: Mir, 1982. 328 p.
  23. Wack DC, Webb WW. Synchrotron x-ray study of the modulated lamellar phase P β ’ in the lecithin-water system. Phys Rev A. 1989 Sep 1;40(5):2712-30. PubMed, CrossRef
  24. Lisetski LN, Batrachenko LA, Panikarskaya VD. Effects of polar interactions and molecular packing upon the induced smectic mesomorphism. Mol Cryst Liq Cryst. 1992;215(1):287-94. CrossRef
  25. Sapia P, Coppola L, Ranieri G, Sportelli L.  Effects of high electrolyte concentration on DPPC-multilayers: an ESR and DSC investigation. Colloid Polym Sci. 1994 Oct;272(10):1289-1294. CrossRef
  26. Vashchenko OO, Pashynska VA, Kosevich MV, Boryak OA, Kasian NA, Lisetski LN. Investigation on combined effect of quaternary ammonium compounds and an organic acid on model phospholipid. Biophys Bull. 2010;(25(2)):55-72.
  27. Lee DC, Chapman D. Infrared spectroscopic studies of biomembranes and model membranes. Biosci Rep. 1986 Mar;6(3):235-56. Review. PubMed, CrossRef
  28. Mantsch HH, McElhaney RN. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids. 1991 Mar;57(2-3):213-26. Review. PubMed, CrossRef
  29. Okamura E, Umemura J, Takenaka T. Orientation studies of hydrated dipalmitoylphosphatidylcholine multibilayers by polarized FTIR-ATR spectroscopy. Biochim Biophys Acta. 1990 Jun 11;1025(1):94-8. PubMed, CrossRef
  30. Arrondo JL, Goñi FM. Infrared studies of protein-induced perturbation of lipids in lipoproteins and membranes. Chem Phys Lipids. 1998 Nov;96(1-2):53-68. Review. PubMed, CrossRef
  31. Popova AV, Hincha DK. Thermotropic phase behavior and headgroup interactions of the nonbilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state. BMC Biophys. 2011 May 10;4:11. PubMed, PubMedCentral, CrossRef
  32. Kharakoz DP. The possible physiological role of a “liquid-solid” transition in biological membranes. Uspekhi Biologicheskoi Khimii. 2001,41:333-364.
  33. Blume A. Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies. Curr Opin Colloid Interface Sci. 1996;1(1):64-77. CrossRef
  34. Hauser H, Phillips MC, Stubbs M. Ion permeability of phospholipid bilayers. Nature. 1972 Oct 6;239(5371):342-4. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.