Ukr.Biochem.J. 2016; Том 88, № 1, січень-лютий, c. 61-68

doi: http://dx.doi.org/10.15407/ubj88.01.061

Взаємодія протеїнів Prx II та CKBB за умов теплового стресу в клітинах A549 та HeLa

А. Д. Рахметов1, Лі Сан-Піль2, Л. І. Остапченко1, Чає Хо-Зун2

1ННЦ «Інститут біології», Київський національний університет імені Тараса Шевченка, Україна;
2Чоннамський національний університет, Кванджу, Південна Корея;
е-mail: anar.rakhmetov@gmail.com

Пероксиредоксини (Prxs) – це універсальні ензими, які демонструють різноманіття клітинних функцій, таких як: пероксидазна, шаперонна, модуляторів сигнальних молекул та протеїнів-партнерів. Встановлено, що Prxs у клітині взаємодіють із багатьма функціональними протеїнами, наприклад: ASK1, Cdk5-p35, JNK, MIF, PDGF, TKR4 та ін. Звідси головною метою нашої роботи було дослідити можливу взаємодію між мультифункціональним протеїном Prx II сімейства Prxs і АТP/АDP буферним ензимом – креатинфосфокіназою головного мозку (CKBB). Завдяки реакції коімунопреципітації (Cо-IP) показано взаємодію надекспресованих HA-Prx II і Flag-CKBB протеїнів у лізатах клітин А549 та HeLa. Така протеїн–протеїнова асоціація була додатково індукована температурним стресом із подальшою преципітацією сигналу залежно від підвищення температури. Температурноіндукована олігомеризація Prx II, ймовірно, сприяє формуванню Prx II-конгломератів, які в свою чергу можуть зв’язуватись із CKBB та ініціювати підвищення інтенсивності сигналу на блоті. Таким чином, асоціація між Prx II та CKBB може бути пов’язана з відновленням та захистом ензиматичної активності CKBB, яка була втрачена під час інактивації за дії підвищеної температури.

Ключові слова: , , ,


Посилання:

  1. Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW, Choi YO, Kim WY, Kang JS, Cheong GW, Yun DJ, Rhee SG, Cho MJ, Lee SY. Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell. 2004 May 28;117(5):625-35. PubMed
  2. König J, Galliardt H, Jütte P, Schäper S, Dittmann L, Dietz KJ. The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone. J Exp Bot. 2013 Aug;64(11):3483-97. PubMed, PubMedCentral, CrossRef
  3. Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci USA. 1994 Jul 19;91(15):7017-21. PubMed, PubMedCentral, CrossRef
  4. Rhee SG, Woo HA. Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones. Antioxid Redox Signal. 2011 Aug 1;15(3):781-94. PubMedPubMed
  5. Chae HZ, Oubrahim H, Park JW, Rhee SG, Chock PB. Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid Redox Signal. 2012 Mar 15;16(6):506-23.  PubMed, PubMedCentral, CrossRef
  6. Lowther WT, Haynes AC. Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin. Antioxid Redox Signal. 2011 Jul 1;15(1):99-109. PubMed, PubMedCentralCrossRef
  7. Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature. 2003 Oct 30;425(6961):980-4. PubMed, CrossRef
  8. Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, Rhee SG. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins.  J Biol Chem. 2005 Feb 4;280(5):3125-8. PubMed, CrossRef
  9. Kinnula VL, Lehtonen S, Sormunen R, Kaarteenaho-Wiik R, Kang SW, Rhee SG, Soini Y. Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma. J Pathol. 2002 Mar;196(3):316-23. PubMed, CrossRef
  10. Noh DY, Ahn SJ, Lee RA, Kim SW, Park IA, Chae HZ. Overexpression of peroxiredoxin in human breast cancer. Anticancer Res. 2001 May-Jun;21(3B):2085-90. PubMed
  11. Karihtala P, Mäntyniemi A, Kang SW, Kinnula VL, Soini Y. Peroxiredoxins in breast carcinoma. Clin Cancer Res. 2003 Aug 15;9(9):3418-24. PubMed
  12. Park SH, Chung YM, Lee YS, Kim HJ, Kim JS, Chae HZ, Yoo YD. Antisense of human peroxiredoxin II enhances radiation-induced cell death. Clin Cancer Res. 2000 Dec;6(12):4915-20. PubMed
  13. Chung YM, Yoo YD, Park JK, Kim YT, Kim HJ. Increased expression of peroxiredoxin II confers resistance to cisplatin. Anticancer Res. 2001 Mar-Apr;21(2A):1129-33.
    PubMed
  14. Han YH, Kim SU, Kwon TH, Lee DS, Ha HL, Park DS, Woo EJ, Lee SH, Kim JM, Chae HB, Lee SY, Kim BY, Yoon do Y, Rhee SG, Fibach E, Yu DY. Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability. Biochem Biophys Res Commun. 2012 Sep 28;426(3):427-32. PubMedCrossRef
  15. Lee W, Choi KS, Riddell J, Ip C, Ghosh D, Park JH, Park YM. Human peroxiredoxin 1 and 2 are not duplicate proteins: the unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2. J Biol Chem. 2007 Jul 27;282(30):22011-22. PubMed, CrossRef
  16. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J. 1992 Jan 1;281 ( Pt 1):21-40. Review. PubMed, PubMedCentral, CrossRef
  17. Aksenov M, Aksenova M, Butterfield DA, Markesbery WR. Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem. 2000 Jun;74(6):2520-7. PubMed, CrossRef
  18. Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience. 2001;103(2):373-83. PubMedCrossRef
  19. Kim J, Amante DJ, Moody JP, Edgerly CK, Bordiuk OL, Smith K, Matson SA, Matson WR, Scherzer CR, Rosas HD, Hersch SM, Ferrante RJ. Reduced creatine kinase as a central and peripheral biomarker in Huntington’s disease. Biochim Biophys Acta. 2010 Jul-Aug;1802(7-8):673-81.  PubMed, PubMedCentral, CrossRef
  20. Pace PE, Peskin AV, Han MH, Hampton MB, Winterbourn CC. Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide- isomerase ERp46. Biochem J. 2013 Aug 1;453(3):475-85. PubMed, CrossRef
  21. Kim SY, Kim TJ, Lee KY. A novel function of peroxiredoxin 1 (Prx-1) in apoptosis signal-regulating kinase 1 (ASK1)-mediated signaling pathway. FEBS Lett. 2008 Jun 11;582(13):1913-8. PubMed, CrossRef
  22. Qu D, Rashidian J, Mount MP, Aleyasin H, Parsanejad M, Lira A, Haque E, Zhang Y, Callaghan S, Daigle M, Rousseaux MW, Slack RS, Albert PR, Vincent I, Woulfe JM, Park DS. Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson’s disease. Neuron. 2007 Jul 5;55(1):37-52. PubMedCrossRef
  23. Jung H, Kim T, Chae HZ, Kim KT, Ha H. Regulation of macrophage migration inhibitory factor and thiol-specific antioxidant protein PAG by direct interaction. J Biol Chem. 2001 May 4;276(18):15504-10. PubMed, CrossRef
  24. Kinnula VL, Lehtonen S, Kaarteenaho-Wiik R, Lakari E, Pääkkö P, Kang SW, Rhee SG, Soini Y. Cell specific expression of peroxiredoxins in human lung and pulmonary sarcoidosis. Thorax. 2002 Feb;57(2):157-64. PubMed, PubMedCentral, CrossRef
  25. Chae HZ, Kim HJ, Kang SW, Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract. 1999 Sep;45(2-3):101-12. PubMed, CrossRef
  26. Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med. 2002 Jun 1;32(11):1050-60. Review. PubMed, CrossRef
  27. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med. 2002 Aug 15;33(4):562-71. PubMed, CrossRef
  28. David S, Shoemaker M, Haley BE. Abnormal properties of creatine kinase in Alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Mol Brain Res. 1998 Mar 1;54(2):276-87. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.