Ukr.Biochem.J. 2016; Том 88, № 5, вересень-жовтень, c. 82-89

doi: https://doi.org/10.15407/ubj88.05.082

Вплив донора оксиду азоту SNAP на вивільнення ГАМК із нервових закінчень мозку щурів

А. С. Тарасенко

Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
e-mail: tas@biochem.kiev.ua

У роботі ми досліджували вплив нано­молярних концентрацій оксиду азоту на вивільнення ГАМК (гама-аміномасляної кислоти) з нервових закінчень мозку щурів. Для цього використовували радіоізотопний метод із [3H]ГАМК та спектрофлуориметричний метод із застосуванням Са2+-чутливого зонда Fluo-4 AM. Показано, що в присутності дитіотреїтолу (ДТТ) донор оксиду азоту SNAP у концентрації, що виділяє NO в наномолярному діапазоні, спричинює Са2+-незалежне вивільнення [3H]ГАМК із нервових закінчень. Застосування 4-амінопіридину (4-АП) та ніпекотинової кислоти (НК) як індукторів вивільнення ГАМК із везикулярного та цитоплазматичного пулів показало, що максимум SNAP/+ДТТ-індукованого вивільнення [3H]ГАМК припадає на 10-ту хв інкубації і збігається в часі з майже вдвічі збільшеним вивільненням [3H]ГАМК за дії НК. У ц[ей час 4-АП-індуковане вивільнення [3H]ГАМК істот­но знижувалося. На 15-й хв інкубації синаптосом із SNAP+ДТТ спостерігалася протилежна картина: зменшення НК- і збільшення 4-АП-індукованого вивільнення [3H]ГАМК. Таким чином, у наномолярному діапазоні концентрацій оксид азоту у вигляді S-нітрозотіолів зумовлює Са2+-незалежне витікання ГАМК із синаптичних везикул у цитозоль із наступним його вивільненням із нервових терміналей. У подальшому відбувається зворотне захоплення нейромедіатора і його реакумуляція в синаптичних везикулах.

Ключові слова: , ,


Посилання:

  1. Bradley SA, Steinert JR. Nitric Oxide-Mediated Posttranslational Modifications: Impacts at the Synapse. Oxid Med Cell Longev. 2016;2016:5681036. PubMedPubMedCentral, CrossRef
  2. Hardingham N, Dachtler J, Fox K. The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front Cell Neurosci. 2013 Oct 31;7:190. PubMed, PubMedCentral, CrossRef
  3. Pan ZH, Segal MM, Lipton SA. Nitric oxide-related species inhibit evoked neurotransmission but enhance spontaneous miniature synaptic currents in central neuronal cultures. Proc Natl Acad Sci USA. 1996 Dec 24;93(26):15423-8. PubMed, PubMedCentral, CrossRef
  4. Cserép C, Szabadits E, Szőnyi A, Watanabe M, Freund TF, Nyiri G. NMDA receptors in GABAergic synapses during postnatal development. PLoS One. 2012;7(5):e37753. PubMed, PubMedCentral, CrossRef
  5. Wang S, Teschemacher AG, Paton JF, Kasparov S. Mechanism of nitric oxide action on inhibitory GABAergic signaling within the nucleus tractus solitarii. FASEB J. 2006 Jul;20(9):1537-9. PubMed, CrossRef
  6. Ohkuma S, Katsura M, Chen DZ, Narihara H, Kuriyama K. Nitric oxide-evoked [3H] gamma-aminobutyric acid release is mediated by two distinct release mechanisms. Brain Res Mol Brain Res. 1996 Feb;36(1):137-44.  PubMed, CrossRef
  7. Sequeira SM, Duarte CB, Carvalho AP, Carvalho CM. Nitric oxide differentially affects the exocytotic and the carrier-mediated release of [3H] gamma-aminobutyric acid in rat hippocampal synaptosomes. Brain Res Mol Brain Res. 1998 Apr;55(2):337-40. PubMed, CrossRef
  8. Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364(6438):626-32. PubMedCrossRef
  9. Rudkouskaya A, Sim V, Shah AA, Feustel PJ, Jourd’heuil D, Mongin AA. Long-lasting inhibition of presynaptic metabolism and neurotransmitter release by protein S-nitrosylation. Free Radic Biol Med. 2010 Sep 1;49(5):757-69. PubMed, PubMedCentral, CrossRef
  10. Li DP, Chen SR, Finnegan TF, Pan HL. Signalling pathway of nitric oxide in synaptic GABA release in the rat paraventricular nucleus. J Physiol. 2004 Jan 1;554(Pt 1):100-10. PubMed, PubMedCentral, CrossRef
  11. Knott AB, Bossy-Wetzel E. Nitric oxide in health and disease of the nervous system. Antioxid Redox Signal. 2009 Mar;11(3):541-54. Review. PubMed, PubMedCentral, CrossRef
  12. Matthews JR, Botting CH, Panico M, Morris HR, Hay RT. Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res. 1996 Jun 15;24(12):2236-42. PubMed, PubMedCentral, CrossRef
  13. Cotman CW. Isolation of synaptosomal and synaptic plasma membrane fractions. Methods Enzymol. 1974;31:445-52. PubMed, CrossRef
  14. Larson E, Howlett B, Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Anal Biochem. 1986 Jun;155(2):243-8. PubMed, CrossRef
  15. Tarasenko AS. The effect of nitric oxide on synaptic vesicle proton gradient and mitochondrial potential of brain nerve terminals. Ukr Biochem J. 2015 Nov-Dec;87(6):64-75. PubMed, CrossRef
  16. Hu TM, Chou TC. The kinetics of thiol-mediated decomposition of S-nitrosothiols. AAPS J. 2006 Jul 28;8(3):E485-92. PubMed, PubMedCentral, CrossRef
  17. Meffert MK, Premack BA, Schulman H. Nitric oxide stimulates Ca(2+)-independent synaptic vesicle release. Neuron. 1994 Jun;12(6):1235-44. PubMed, CrossRef
  18. Kaeser PS, Regehr WG. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol. 2014;76:333-63. Review. PubMed, PubMedCentral, CrossRef
  19. Storchak LG, Pozdnyakova NG, Himmelreich NH. Differential effect of protein kinase inhibitors on calcium-dependent and calcium-independent [14C]GABA release from rat brain synaptosomes. Neuroscience. 1998 Aug;85(3):989-97. PubMed, CrossRef
  20. Szerb JC. Effect of nipecotic acid, a gamma-aminobutyric acid transport inhibitor, on the turnover and release of gamma-aminobutyric acid in rat cortical slices. J Neurochem. 1982 Sep;39(3):850-8. PubMed, CrossRef
  21. Lonart G, Johnson KM. Characterization of nitric oxide generator-induced hippocampal [3H]norepinephrine release. II. The role of calcium, reverse norepinephrine transport and cyclic 3′,5′-guanosine monophosphate. J Pharmacol Exp Ther. 1995 Oct;275(1):14-22. PubMed
  22. Raiteri L, Raiteri M. Multiple functions of neuronal plasma membrane neurotransmitter transporters. Prog Neurobiol. 2015 Nov;134:1-16. PubMed, CrossRef
  23. Falkenburger BH, Barstow KL, Mintz IM. Dendrodendritic inhibition through reversal of dopamine transport. Science. 2001 Sep 28;293(5539):2465-70.
    PubMed, CrossRef
  24. Wu Y, Wang W, Díez-Sampedro A, Richerson GB. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron. 2007 Dec 6;56(5):851-65. PubMed, PubMedCentral, CrossRef
  25. Richerson GB, Wu Y. Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol. 2003 Sep;90(3):1363-74. Review. PubMed, CrossRef
  26. Merino JJ, Arce C, Naddaf A, Bellver-Landete V, Oset-Gasque MJ, González MP. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels. PLoS One. 2014 Mar 5;9(3):e90703. PubMed, PubMedCentral, CrossRef
  27. Nedvetsky PI, Konev SV, Rakovich AA, Petrenko SV, Mongin AA. Effects of nitric oxide donors on Ca2+-dependent [14C]GABA release from brain synaptosomes: the role of SH-groups. Biochemistry (Mosc). 2000 Sep;65(9):1027-35. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.