Ukr.Biochem.J. 2017; Том 89, № 1, січень-лютий, c. 59-70

doi: https://doi.org/10.15407/ubj89.01.059

Глікомаркери стресу ендоплазматичного ретикулума і лізосомно-ендосомної системи в сироватці крові людини при старінні та захворюваннях

І. Ю. Письменецька1, Т. Д. Баттерс2

1ДУ «Дніпропетровська медична академія», Україна;
2CarboNet Consulting Ltd., Оксфорд, Велика Британія;
e-mail: ip01589@gmail.com

Для перевірки гіпотези, чи можуть позаклітинні вільні олігосахариди відображати функціональний стан ендоплазматичного ретикулума (ЕР) і ендосомно-лізосомної системи, ВЕРХ-спектри вільних олігосахаридів сироватки крові людини при старінні, гострих мієлопроліферативних новоутвореннях і серцево-судинних патологіях порівнювали із внутрішньоклітинними гліканами. Після депротеїнізації і очищення вільних олігосахаридів сироватки крові людини їх маркували антраніловою кислотою, поділяли на нейтральні і заряджені за допомогою хроматографії на QAE сефадексе (Q25-120) і аналізували методом ВЕРХ. Для аналізу гліканів зарядженої фракції їх розщеплювали сіалідазою і порівнювали з олігосахаридами трансферину. ВЕРХ-спектри вільних олігосахаридів сироватки крові виявили: за старіння – помірне гальмування циклу доліхолфосфату в ЕР, посилення асоційованої з ЕР деградації і деградації в ендосомно-лізосомній системі; за гострих мієлопроліферативних новоутворень – інгібування циклу доліхолфосфату, посилення асоційованої з ЕР деградації і підвищення лізосомального екзоцитозу; у разі серцево-судинних патологій – посилення асоційованої з ЕР деградації і деградації глікокон’югатів ендосомно-лізосомною системою. Показано, що вільні олігосахариди сироватки крові виявляють специфічні зміни ЕР і ендосомно-лізосомної системи за дії широкого спектра стресорних факторів і, певно, можуть бути позаклітинними маркерами функціонального статусу цих органел.

Ключові слова: , , , , ,


Посилання:

  1. Pechmann S, Willmund F, Frydman J. The ribosome as a hub for protein quality control. Mol Cell. 2013 Feb 7;49(3):411-21. Review. PubMed, PubMedCentral, CrossRef
  2. Gardner RG, Nelson ZW, Gottschling DE. Degradation-mediated protein quality control in the nucleus. Cell. 2005 Mar 25;120(6):803-15. PubMed, CrossRef
  3. Matsuo Y, Kishimoto H, Tanae K, Kitamura K, Katayama S, Kawamukai M. Nuclear protein quality is regulated by the ubiquitin-proteasome system through the activity of Ubc4 and San1 in fission yeast. J Biol Chem. 2011 Apr 15;286(15):13775-90. PubMed, PubMedCentral, CrossRef
  4. Fischer F, Hamann A, Osiewacz HD. Mitochondrial quality control: an integrated network of pathways. Trends Biochem Sci. 2012 Jul;37(7):284-92. Review. PubMed, CrossRef
  5. Apaja PM, Lukacs GL. Protein homeostasis at the plasma membrane. Physiology (Bethesda). 2014 Jul;29(4):265-77. Review. PubMed, PubMedCentral, http://dx.doi.org/10.1152/physiol.00058.2013″]
  6. Minamino T, Komuro I, Kitakaze M. Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res. 2010 Oct 29;107(9):1071-82. Review. PubMed, CrossRef
  7. Ruggiano A, Foresti O, Carvalho P. Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol. 2014 Mar 17;204(6):869-79. Review. PubMed, PubMedCentral, CrossRef
  8. Chakrabarti A, Chen AW, Varner JD. A review of the mammalian unfolded protein response. Biotechnol Bioeng. 2011 Dec;108(12):2777-93. Review. PubMed, PubMedCentral, CrossRef
  9. Thibault G, Ismail N, Ng DT. The unfolded protein response supports cellular robustness as a broad-spectrum compensatory pathway. Proc Natl Acad Sci USA. 2011 Dec 20;108(51):20597-602.  PubMed, PubMedCentral, CrossRef
  10. Glozman R, Okiyoneda T, Mulvihill CM, Rini JM, Barriere H, Lukacs GL. N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic. J Cell Biol. 2009 Mar 23;184(6):847-62. PubMed, PubMedCentral, CrossRef
  11. Gabius HJ, André S, Jiménez-Barbero J, Romero A, Solís D. From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci. 2011 Jun;36(6):298-313.  PubMed, CrossRef
  12. Sybirna NO, Shevtsova AI, Ushakova GO, Pysmenetska IU. Fundamentals of Glycobiology. Lviv: Ivan Franko National University. 2015; 294-296. (In Ukrainian).
  13. Pismenetskaya IU, Butters TD. “Three sources and three component parts” of free oligosaccharides. Ukr Biochem J. 2014 Nov-Dec;86(6):5-17. Review. PubMed, CrossRef
  14. Pismenetskaya IU, Butters TD. Decoding the structures of plasma free oligosaccharides from patients with chronic myeloproliferative diseases. Lab Diagn. Eastern Europe. 2014; 12(4): 69-78. (In Russian).
  15. Pismenetskaya IU, Butters TD. HPLC-profiles of plasma free oligosaccharides in acute hematologic malignancies. Sci Notes Taurida VI Vernadsky Nat Univ. Series: Biology and Chemistry. 2014;27(66)(3):102-111. (In Russian).
  16. Pismenetskaya IU, Butters TD. Chromatographic profiles of blood plasma free oligosaccharides in patients with cardiovascular disease. Visnyk Dnipr Univ. Series: Biology and Medicine. 2015; 6(1): 51-56. (In Russian).
  17. Alonzi DS, Neville DC, Lachmann RH, Dwek RA, Butters TD. Glucosylated free oligosaccharides are biomarkers of endoplasmic- reticulum alpha-glucosidase inhibition. Biochem J. 2008 Jan 15;409(2):571-80. PubMed, CrossRef
  18. Neville DC, Coquard V, Priestman DA, te Vruchte DJ, Sillence DJ, Dwek RA, Platt FM, Butters TD. Analysis of fluorescently labelled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labelling. Anal Biochem. 2004; 331(2): 275-282. CrossRef
  19. Neville DC, Dwek RA, Butters TD. Development of a single column method for the separation of lipid- and protein-derived oligosaccharides. J Proteome Res. 2009 Feb;8(2):681-7. PubMed, CrossRef
  20. Pismenetskaya IU, Butters TD. Blood plasma free oligosaccharides of practically healthy volunteers. Sci Notes Taurida VI Vernadsky Nat Univ. Series: Biology and Chemistry. 2012; 2 (64)(1):182-187. (In Ukrainian).
  21. Kharabi Masouleh B, Chevet E, Panse J, Jost E, O’Dwyer M, Bruemmendorf TH, Samali A. Drugging the unfolded protein response in acute leukemias. J Hematol Oncol. 2015 Jul 16;8:87.  PubMed, PubMedCentral, CrossRef
  22. Pismenetskaya IU, Butters TD. Molecular and cellular mechanisms of profile changes of charged blood plasma free oligosaccharides in myeloproliferative disorders. Visnyk Dnipr Univ. Series: Biology and Medicine. 2016; 7(1): 59-64. (In Russian).
  23. Liu M, Dudley SC Jr. Role for the Unfolded Protein Response in Heart Disease and Cardiac Arrhythmias. Int J Mol Sci. 2015 Dec 31;17(1). pii: E52. Review. PubMed, PubMedCentral, CrossRef
  24. Thorp EB The Myocardial Unfolded Protein Response during Ischemic Cardiovascular Disease. Biochem Res Int. 2012;2012:583170.  PubMed, PubMedCentral, CrossRef
  25. Gao G, Xie A, Zhang J, Herman AM, Jeong EM, Gu L, Liu M, Yang KC, Kamp TJ, Dudley SC. Unfolded protein response regulates cardiac sodium current in systolic human heart failure. Circ Arrhythm Electrophysiol. 2013 Oct;6(5):1018-24. PubMed, PubMedCentral, CrossRef
  26. Walter F, Schmid J, Düssmann H, Concannon CG, Prehn JH. Imaging of single cell responses to ER stress indicates that the relative dynamics of IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between signalling branches determine cell survival. Cell Death Differ. 2015 Sep;22(9):1502-16. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.