Ukr.Biochem.J. 2018; Том 90, № 6, листопад-грудень, c. 110-119

doi: https://doi.org/10.15407/ubj90.06.110

Ефект інтраназального введення TLR3 агоніста ларифану на метаболічний профіль мікрогліальних клітин щурів із гліомою С6

Є. В. Гурмач1, М. П. Рудик1, В. М. Святецька1, Н. В. Сенчило1,
О. В. Скачкова2, Д. П’янова3, К. Ваїводе3, Л. М. Сківка1

1ННЦ «Інститут біології та медицини», Київський національний університет імені Тараса Шевченка, Україна;
2Лабораторія експериментальної онкології, Національний інститут раку, Київ, Україна;
3Латвійський біомедичний дослідно-навчальний центр, Рига, Латвія;
e-mail: jhurmach@gmail.com

Гліомаасоційовані мікроглія/макрофаги (ГАМ) є привабливою терапевтичною мішенню для розробки альтернативного методу лікування гліом. Метою роботи було дослідження впливу інтраназального введення агоніста TLR3 препарату Ларифан на метаболічний профіль мікрогліальних клітин щурів із гліомою C6. Результати проведених нами досліджень засвідчують прогресивне формування в головному мозку в умовах розвитку гліоми популяції мікрогліальних клітин з імуносупресивними та прозапальними властивостями. Інтраназальне введення зазначеного агоніста перешкоджає формуванню імунного інфільтрату з імуносупресивними властивостями, імовірно, за рахунок впливу на мієлоїдні супресорні клітини. Це дає підстави розглядати препарат Ларифан як перспективний агент для лікування гліом, спрямованого на зміну метаболічного профілю ГАМ.
Ключові слова: .

Ключові слова: , , ,


Посилання:

  1. Woehrer A, Bauchet L, Barnholtz-Sloan JS. Glioblastoma survival: has it improved? Evidence from population-based studies. Curr Opin Neurol. 2014 Dec;27(6):666-74. PubMed, CrossRef
  2. Shergalis A, Bankhead A 3rd, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. 2018 Jul;70(3):412-445. PubMed, PubMedCentral, CrossRef
  3. Roesch S, Rapp C, Dettling S, Herold-Mende C. When Immune Cells Turn Bad-Tumor-Associated Microglia/Macrophages in Glioma. Int J Mol Sci. 2018 Feb 1;19(2). pii: E436.   PubMed, PubMedCentral, CrossRef
  4. Gieryng A, Pszczolkowska D, Walentynowicz KA, Rajan WD, Kaminska B. Immune microenvironment of gliomas. Lab Invest. 2017 May;97(5):498-518. PubMed, CrossRef
  5. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016 Jan;19(1):20-7.  PubMed, PubMedCentral, CrossRef
  6. Lisi L, Ciotti GM, Braun D, Kalinin S, Currò D, Dello Russo C, Coli A, Mangiola A, Anile C, Feinstein DL, Navarra P. Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci Lett. 2017 Apr 3;645:106-112.  PubMed, CrossRef
  7. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, Setty M, Leslie CS, Oei Y, Pedraza A, Zhang J, Brennan CW, Sutton JC, Holland EC, Daniel D, Joyce JA. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013 Oct;19(10):1264-72. PubMed, PubMedCentral, CrossRef
  8. Dello Russo C, Lisi L, Tentori L, Navarra P, Graziani G, Combs CK. Exploiting Microglial Functions for the Treatment of Glioblastoma. Curr Cancer Drug Targets. 2017;17(3):267-281. PubMed, CrossRef
  9. da Fonseca AC, Badie B. Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol. 2013;2013:264124. PubMed, PubMedCentral, CrossRef
  10. Zheng X, Turkowski K, Mora J, Brüne B, Seeger W, Weigert A, Savai R. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget. 2017 Jul 18;8(29):48436-48452. PubMed, PubMedCentral, CrossRef
  11. Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ, Weissleder R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2018;2(8):578-588. PubMed, PubMedCentral, CrossRef
  12. Deng S, Zhu S, Qiao Y, Liu YJ, Chen W, Zhao G, Chen J. Recent advances in the role of toll-like receptors and TLR agonists in immunotherapy for human glioma. Protein Cell. 2014 Dec;5(12):899-911. PubMed, PubMedCentral, CrossRef
  13. De Waele J, Marcq E, Van Audenaerde JR, Van Loenhout J, Deben C, Zwaenepoel K, Van de Kelft E, Van der Planken D, Menovsky T, Van den Bergh JM, Willemen Y, Pauwels P, Berneman ZN, Lardon F, Peeters M, Wouters A, Smits EL. Poly(I:C) primes primary human glioblastoma cells for an immune response invigorated by PD-L1 blockade. Oncoimmunology. 2017 Dec 12;7(3):e1407899. PubMed, PubMedCentral, CrossRef
  14. Conforti R, Ma Y, Morel Y, Paturel C, Terme M, Viaud S, Ryffel B, Ferrantini M, Uppaluri R, Schreiber R, Combadière C, Chaput N, André F, Kroemer G, Zitvogel L. Opposing effects of toll-like receptor (TLR3) signaling in tumors can be therapeutically uncoupled to optimize the anticancer efficacy of TLR3 ligands. Cancer Res. 2010 Jan 15;70(2):490-500.  PubMed, CrossRef
  15. Li G, Bonamici N, Dey M, Lesniak MS, Balyasnikova IV. Intranasal delivery of stem cell-based therapies for the treatment of brain malignancies. Expert Opin Drug Deliv. 2018 Feb;15(2):163-172. PubMed, PubMedCentral, CrossRef
  16. Van Woensel M, Mathivet T, Wauthoz N, Rosière R, Garg AD, Agostinis P, Mathieu V, Kiss R, Lefranc F, Boon L, Belmans J, Van Gool SW, Gerhardt H, Amighi K, De Vleeschouwer S. Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy. Sci Rep. 2017 Apr 27;7(1):1217. PubMed, PubMedCentral, CrossRef
  17. Silin DS, Lyubomska OV, Ershov FI, Frolov VM, Kutsyna GA. Synthetic and natural immunomodulators acting as interferon inducers. Curr Pharm Des. 2009;15(11):1238-47. PubMed, CrossRef
  18. Veinalde R, Petrovska R, Brūvere R, Feldmane G, Pjanova D. Ex vivo cytokine production in peripheral blood mononuclear cells after their stimulation with dsRNA of natural origin. Biotechnol Appl Biochem. 2014 Jan-Feb;61(1):65-73. PubMed, CrossRef
  19. Frank MG, Wieseler-Frank JL, Watkins LR, Maier SF. Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: immunophenotypic and functional characteristics. J Neurosci Methods. 2006 Mar 15;151(2):121-30. PubMed, CrossRef
  20. Macrophages and dendritic cells. Methods and Protocols. Edited by Neil E.Reiner. NY, Humana Press, 2009, 368 p. CrossRef
  21. Cantinieaux B, Hariga C, Courtoy P, Hupin J, Fondu P. Staphylococcus aureus phagocytosis. A new cytofluorometric method using FITC and paraformaldehyde. J Immunol Methods. 1989 Jul 26;121(2):203-8. PubMed, CrossRef
  22. Kaczanowska S, Joseph AM, Davila E. TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol. 2013 Jun;93(6):847-63. PubMed, PubMedCentral, CrossRef
  23. Geller MA, Cooley S, Argenta PA, Downs LS, Carson LF, Judson PL, Ghebre R, Weigel B, Panoskaltsis-Mortari A, Curtsinger J, Miller JS. Toll-like receptor-7 agonist administered subcutaneously in a prolonged dosing schedule in heavily pretreated recurrent breast, ovarian, and cervix cancers. Cancer Immunol Immunother. 2010 Dec;59(12):1877-1884. PubMed, PubMedCentral, CrossRef
  24. Shi J, Zhang Y, Fu WM, Chen M, Qiu Z. Establishment of C6 brain glioma models through stereotactic technique for laser interstitial thermotherapy research. Surg Neurol Int. 2015 Apr 1;6:51. PubMed, PubMedCentral, CrossRef
  25. Li K, Qu S, Chen X, Wu Q, Shi M. Promising Targets for Cancer Immunotherapy: TLRs, RLRs, and STING-Mediated Innate Immune Pathways. Int J Mol Sci. 2017 Feb 14;18(2). pii: E404. PubMed, PubMedCentral, CrossRef
  26. Salaun B, Coste I, Rissoan MC, Lebecque SJ, Renno T. TLR3 can directly trigger apoptosis in human cancer cells. J Immunol. 2006 Apr 15;176(8):4894-901. PubMed, CrossRef
  27. Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 2010 Nov;12(11):1113-25. PubMed, PubMedCentral, CrossRef
  28. Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M, Kaminska B. Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One. 2011;6(8):e23902. PubMed, PubMedCentral, CrossRef
  29. Scodeller P, Simón-Gracia L, Kopanchuk S, Tobi A, Kilk K, Säälik P, Kurm K, Squadrito ML, Kotamraju VR, Rinken A, De Palma M, Ruoslahti E, Teesalu T. Precision Targeting of Tumor Macrophages with a CD206 Binding Peptide. Sci Rep. 2017 Nov 7;7(1):14655. PubMed, PubMedCentral, CrossRef
  30. Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. Neuro Oncol. 2012 Aug;14(8):958-78. PubMed, PubMedCentral, CrossRef
  31. Poon CC, Sarkar S, Yong VW, Kelly JJP. Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis. Brain. 2017 Jun 1;140(6):1548-1560.  PubMed, CrossRef
  32. Gieryng A, Pszczolkowska D, Bocian K, Dabrowski M, Rajan WD, Kloss M, Mieczkowski J, Kaminska B. Immune microenvironment of experimental rat C6 gliomas resembles human glioblastomas. Sci Rep. 2017 Dec 14;7(1):17556.  PubMed, PubMedCentral, CrossRef
  33. Brandenburg S, Turkowski K, Mueller A, Radev YT, Seidlitz S, Vajkoczy P. Myeloid cells expressing high level of CD45 are associated with a distinct activated phenotype in glioma. Immunol Res. 2017 Jun;65(3):757-768.  PubMed, CrossRef
  34. Yang R, Cai Z, Zhang Y, Yutzy WH 4th, Roby KF, Roden RB. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res. 2006 Jul 1;66(13):6807-15. PubMed, CrossRef
  35. Dilek N, Vuillefroy de Silly R, Blancho G, Vanhove B. Myeloid-derived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance. Front Immunol. 2012 Jul 17;3:208.  PubMed, PubMedCentral, CrossRef
  36. Fernández A, Oliver L, Alvarez R, Fernández LE, Lee KP, Mesa C. Adjuvants and myeloid-derived suppressor cells: enemies or allies in therapeutic cancer vaccination. Hum Vaccin Immunother. 2014;10(11):3251-60. PubMed, PubMedCentral, CrossRef
  37. Takeda Y, Kataoka K, Yamagishi J, Ogawa S, Seya T, Matsumoto M. A TLR3-Specific Adjuvant Relieves Innate Resistance to PD-L1 Blockade without Cytokine Toxicity in Tumor Vaccine Immunotherapy. Cell Rep. 2017 May 30;19(9):1874-1887.  PubMed, CrossRef
  38. Bordt EA, Polster BM. NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? Free Radic Biol Med. 2014 Nov;76:34-46.  PubMed, PubMedCentral, CrossRef
  39. Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016 Feb;173(4):649-65. PubMed, PubMedCentral, CrossRef
  40. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009 May 1;182(9):5693-701. PubMed, PubMedCentral, CrossRef
  41. Jia W, Jackson-Cook C, Graf MR. Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma + vaccination model. J Neuroimmunol. 2010 Jun;223(1-2):20-30.  PubMed, PubMedCentral, CrossRef
  42. Voss JJLP, Ford CA, Petrova S, Melville L, Paterson M, Pound JD, Holland P, Giotti B, Freeman TC, Gregory CD. Modulation of macrophage antitumor potential by apoptotic lymphoma cells. Cell Death Differ. 2017 Jun;24(6):971-983.  PubMed, PubMedCentral, CrossRef
  43. Kim YJ, Park SJ, Broxmeyer HE. Phagocytosis, a potential mechanism for myeloid-derived suppressor cell regulation of CD8+ T cell function mediated through programmed cell death-1 and programmed cell death-1 ligand interaction. J Immunol. 2011 Sep 1;187(5):2291-301. PubMed, PubMedCentral, CrossRef
  44. Gieryng A, Kaminska B. Myeloid-derived suppressor cells in gliomas. Contemp Oncol (Pozn). 2016;20(5):345-351.  PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.