Ukr.Biochem.J. 2019; Том 91, № 6, листопад-грудень, c. 122-128

doi: https://doi.org/10.15407/ubj91.06.122

Алельні поліморфізми генів репарації ДНК як маркери резистентності до дії азбестовмісних аерозолів

Т. А. Андрущенко1, С. В. Гончаров2, В. Є. Досенко2, Д. О. Строй2, К. Є. Іщейкін3

1ДУ «Інститут медицини праці імені Ю. І. Кундієва НАМН України», Київ;
2Інститут фізіології ім. О. О. Богомольця НАН України, Київ
3ВДНЗ України «Українська медична стоматологічна академія», Полтава;
e-mail: imp-cys@ukr.net

Отримано: 14 березня 2019; Затверджено: 18 жовтня 2019

Вивчали розподіл частот алельних поліморфізмів генів репарації ДНК в професійній групі працівників азбестоцементних заводів (n = 95). Метою роботи було встановити можливі молекулярно-генетичні маркери резистентності до розвитку бронхолегеневої патології за дії азбестовмісного пилу. У 46 осіб з хронічними формами бронхолегеневої патології та в 49 осіб – працівників тих самих професій, але без захворювань дихальної системи, методом полімеразної ланцюгової реакції в реальному часі визначено алельні поліморфізми генів: XPD (rs13181, rs799793), ERCC1 (rs11615), XRCC3 (rs861539), XRCC1 (rs25487), АТМ (rs664677), XRCC7 (rs7003908) і MLH1 (rs1799977). Встановлено, що генотипи XRCC1•G/А (rs25487) (OR = 0,45; 95%CI: 0,18-1,10; Р = 0,050; χ2 = 3,73); MLH1•A/А (rs1799977) (OR = 0,28; 95%CI: 0,14-0,71; Р = 0,003; χ2 = 8,75) сприяють резистентності до розвитку бронхолегеневої патології, а генотипи: XPD•Asn/Asn (rs799793) (OR = 2,20; 95%CI: 1,75-2,77; Р = 0,001; χ2 = 6,62); XRCC1•А/А (rs25487) (OR = 1,73; 95%CI: 1,23-2,43; Р = 0,040; χ2 = 3,92); АТМ•Т/Т (rs664677) (OR = 3,47; 95%CI: 1,01-12,51; Р = 0,020; χ2 = 4,98); MLH1•A/G (rs1799977) (OR = 2,95; 95%CI: 1,17-7,49; Р = 0,010; χ2 = 6,42) асоційовані з ризиком розвитку захворювань дихальної системи. Одержані результати свідчать про наявність зв’язку між певними алелями генів репарації ДНК із ризиком розвитку бронхолегеневої патології за впливу промислових аерозолів, включно азбестовмісних.

Ключові слова: ,


Посилання:

  1. Kuschel B, Auranen A, McBride S, Novik KL, Antoniou A, Lipscombe JM, Day NE, Easton DF, Ponder BA, Pharoah PD, Dunning A. Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet. 2002 Jun 1;11(12):1399-407. PubMed, CrossRef
  2. Pavanello S, Clonfero E. Individual susceptibility to occupational carcinogens: the evidence from biomonitoring and molecular epidemiology studies. G Ital Med Lav Ergon. 2004 Oct-Dec;26(4):311-21. PubMed
  3. Krejci L, Chen L, Van Komen S, Sung P, Tomkinson A. Mending the break: two DNA double-strand break repair machines in eukaryotes. Prog Nucleic Acid Res Mol Biol. 2003;74:159-201.  PubMed, CrossRef
  4. Li X, Heyer WD. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 2008 Jan;18(1):99-113. PubMed, PubMedCentral, CrossRef
  5. Shen X, Sayer JM, Kroth H, Ponten I, O’Donnell M, Woodgate R, Jerina DM, Goodman MF. Efficiency and accuracy of SOS-induced DNA polymerases replicating benzo[a]pyrene-7,8-diol 9,10-epoxide A and G adducts. J Biol Chem. 2002 Feb 15;277(7):5265-74. PubMed, CrossRef
  6. Andrushchenko TA, Goncharov SV, Dosenko VE. Genetic predisposition to bronchopulmonary pathology in workers of harmful and hazardous industries: analysis of five polymorphisms of DNA gene repair. Fiziol Zh. 2018;64(4):12-19. (In Ukrainian). CrossRef
  7. Thacker J, Zdzienicka MZ. The XRCC genes: expanding roles in DNA double-strand break repair. DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1081-90. PubMed, CrossRef
  8. Litvinov SV. The main repair pathways of double-strand breaks in the genomic DNA and interaction between them. Cytol Genet. 2014;48(3):64-77. (In Russian).
  9. Vonarx EJ, Mitchell HL, Karthikeyan R, Chatlerjee I, Kunz BA. DNA repair in higner plants. Mutat Res/Fundam Mol Mech Mutagen. 1998;400(1-2):187-200. CrossRef
  10. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006 Sep;12(9):440-50. PubMed, CrossRef
  11.  Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006 Dec;6(12):947-60. PubMed, CrossRef
  12. Vineis P, Hoek G, Krzyzanowski M, Vigna-Taglianti F, Veglia F, Airoldi L. Lung cancers attributable to environmental tobacco smoke and air pollution in non-smokers in different European countries: a prospective study. Environ Health. 2007 Feb 15;6:7. PubMed, PubMedCentral, CrossRef
  13. Yang G, Shu XO, Ruan ZX, Cai QY, Jin F, Gao YT, Zheng W. Genetic polymorphisms in glutathione-S-transferase genes (GSTM1, GSTT1, GSTP1) and survival after chemotherapy for invasive breast carcinoma. Cancer. 2005 Jan 1;103(1):52-8. PubMed, CrossRef
  14. Caporaso N, Pickle LW, Bale S, Ayesh R, Hetzel M, Idle J. The distribution of debrisoquine metabolic phenotypes and implications for the suggested association with lung cancer risk. Genet Epidemiol. 1989;6(4):517-24. PubMed, CrossRef
  15. Shin A, Lee KM, Ahn B, Park CG, Noh SK, Park DY, Ahn SH, Yoo KY, Kang D. Genotype-phenotype relationship between DNA repair gene genetic polymorphisms and DNA repair capacity. Asian Pac J Cancer Prev. 2008 Jul-Sep;9(3):501-5. PubMed
  16. Bukowski K, Woźniak K. Polymorphism of genes encoding proteins of DNA repair vs. occupational and environmental exposure to lead, arsenic and pesticides. Med Pr. 2018 Mar 9;69(2):225-235. PubMed, CrossRef
  17. Wang Y, Yang H, Li H, Li L, Wang H, Liu C, Zheng Y. Association between X-ray repair cross complementing group 1 codon 399 and 194 polymorphisms and lung cancer risk: a meta-analysis. Cancer Lett. 2009 Nov 28;285(2):134-40.  PubMed, CrossRef
  18. Rodriguez S, Gaunt TR, Day IN.  Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol. 2009 Feb 15;169(4):505-14.  PubMed, PubMedCentral, CrossRef
  19. Tretyak B, Makukh H, Kitsera N, Kostiuchenko L, Akopyan H. The molecular genetic analysis of common ATM gene mutationsamong patients with ataxia-telagiectasiasuspection. Factors Exp Evol Organisms. 2015; 16: 251-254.
  20. Wang C, Huang XY, Yao JG, Huang BC, Huang CH, Liao P, Long XD. XRCC7 rs#7003908 Polymorphism and Helicobacter pylori Infection-Related Gastric Antrum Adenocarcinoma. Int J Genomics. 2013;2013:124612. PubMed, PubMed, CrossRef
  21. Lanza G, Gafa R, Maestri I, Santini A, Matteuzzi M, Cavazzini L. Immunohistochemical pattern of MLH1/MSH2 expression is related to clinical and pathological features in colorectal adenocarcinomas with microsatellite instability. Mod Pathol. 2002 Jul;15(7):741-9. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.