Ukr.Biochem.J. 2022; Том 94, № 6, листопад-грудень, c. 18-29

doi: https://doi.org/10.15407/ubj94.06.018

Прооксидантно-антиоксидантний профіль у тканинах щурів за дії естерів тіосульфонатів

Н. М. Любас1*, Р. Я. Іскра2, Б. І. Котик1,
Н. Я. Монька3, В. І. Лубенець3

1Інститут біології тварин НААН України, Львів;
2Львівський національний університет імені Івана Франка, Україна;
3Національний університет «Львівська політехніка», Україна;
*e-mail: n_lubas@ukr.net

Отримано: 27 серпня 2022; Виправлено: 29 листопада 2022;
Затверджено: 17 лютого 2023; Доступно онлайн: 27 лютого 2023

Тіосульфонати характеризуються широким спектром біологічної активності, мають ефективну антимікробну, антитромботичну, протипухлинну та протипаразитарну дію. Однак використання синтетичних сірковмісних сполук із лікувально-профілактичною метою потребує вивчення їх впливу на захисні механізми підтримання гомеостазу, зокрема, на антиоксидантний статус організму. Метою роботи була оцінка процесів пероксидного окислення ліпідів та стану антиоксидантної системи в нирках, селезінці, головному мозку та м’язах щурів за дії нових, синтезованих сірковмісних сполук S-алкілових естерів тіосульфокислот: S-етил-4-амінобензентіосульфонату (ETS), S-аліл-4-амінобензентіосульфонату (ATS) та S-аліл-4-ацетиламінобензентіосульфонату (AATS). Щурів-самців лінії Вістар, які утримувалися на стандартному раціоні, було поділено на чотири групи по 5 тварин у кожній: І (контрольна), ІІ, ІІІ, ІV (дослідні). Тварини контрольної групи отримували додатково 0,5 мл олії, а тварини дослідних груп – по 0,5 мл олійних розчинів тіосульфонатів один раз на добу. Тваринам ІІ, ІІІ та ІV груп до добової кількості корму додавали ETS, ATS, AATS з розрахунку 100 мг/кг маси тіла відповідно. У гомогенатах тканин визначали вміст гідропероксидів ліпідів, ТБК-активних продуктів, відновленого глутатіону та активності СОД, каталази, глутатіонпероксидази, глута­тіонредуктази. Виявлено різноспрямовані зміни досліджуваних показників після споживання S-алкілових естерів тіосульфокислот протягом 21 доби, що свідчило про різний ступінь інгібування та активації процесів ПОЛ, залежно від типу тканини та структури тіосульфонату.

Ключові слова: , , , ,


Посилання:

  1. Syrovatko KM, Zotko MO. Technology of feed and feed additives: textbook, Vinnytsia: VNAU, 2020; 263.
  2. Kumar S, Bathla A, Rani A, Singh S, Gautam P, Chandra Sahi N, Chandra Joshi H, Kumar V. Effect of microwave-assisted extraction (MAE) process on % extraction yield, phenolic compounds and antioxidants activity of natural extract from edible fiddleheads and MAE process optimization by using response surface methodology (RSM). Biointerface Res Appl Chem. 2020;10(4):5689-5695. CrossRef
  3. Yehye WA, Rahman NA, Ariffin A, Abd Hamid SB, Alhadi AA, Kadir FA, Yaeghoobi M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. Eur J Med Chem. 2015;101:295-312. PubMed, CrossRef
  4. Liubas N, Iskra R, Stadnytska N, Monka N, Havryliak V, Lubenets V. Antioxidant activity of thiosulfonate compounds in experiments in vitro and in vivo. Biointerface Res Appl Chem. 2022;12(3):3106-3116. CrossRef
  5. Albrakati A. Aged garlic extract rescues ethephon-induced kidney damage by modulating oxidative stress, apoptosis, inflammation, and histopathological changes in rats. Environ Sci Pollut Res Int. 2021;28(6):6818-6829. PubMed, CrossRef
  6. Jang HJ, Lee HJ, Yoon DK, Ji DS, Kim JH, Lee CH. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci Biotechnol. 2017;27(1):219-225. PubMed, PubMedCentral, CrossRef
  7. Li Q, Wang Y, Mai Y, Li H, Wang Z, Xu J, He X. Health Benefits of the Flavonoids from Onion: Constituents and Their Pronounced Antioxidant and Anti-neuroinflammatory Capacities. J Agric Food Chem. 2020;68(3):799-807. PubMed, CrossRef
  8. Batcioglu K, Yilmaz Z, Satilmis B, Uyumlu AB, Erkal HS, Yucel N, Gunal S, Serin M, Demirtas H. Investigation of in vivo radioprotective and in vitro antioxidant and antimicrobial activity of garlic (Allum sativum). Eur Rev Med Pharmacol Sci. 2012;16(Suppl 3):47-57. PubMed
  9. Peinado MJ, Ruiz R, Echávarri A, Rubio LA. Garlic derivative propyl propane thiosulfonate is effective against broiler enteropathogens in vivo. Poult Sci. 2012;91(9):2148-2157. PubMed, CrossRef
  10. Vezza T, Algieri F, Garrido-Mesa J, Utrilla MP, Rodríguez-Cabezas M, Baños A, Guillamón E, García F, Rodríguez-Nogales A, Gálvez J. The Immunomodulatory Properties of Propyl-Propane Thiosulfonate Contribute to its Intestinal Anti-Inflammatory Effect in Experimental Colitis. Mol Nutr Food Res. 2019;63(5):e1800653. PubMed, CrossRef
  11. Abad P, Arroyo-Manzanares Na, Gil L, García-Campaña AM. Use of Onion Extract as a Dairy Cattle Feed Supplement: Monitoring Propyl Propane Thiosulfonate as a Marker of Its Effect on Milk Attributes. J Agric Food Chem. 2017;65(4):793-799. PubMed, CrossRef
  12. Abad P, Arroyo-Manzanares N, Ariza JJ, Baños A, García-Campaña AM. Effect of Allium Extract Supplementation on Egg Quality, Productivity, and Intestinal Microbiota of Laying Hens. Animals (Basel). 2020;11(1):41. PubMed, PubMedCentral, CrossRef
  13. Sánchez CJ, Martínez-Miró S, Ariza JJ, Madrid J, Orengo J, Aguinaga MA, Baños A, Hernández F. Effect of Alliaceae Extract Supplementation on Performance and Intestinal Microbiota of Growing-Finishing Pig. Animals (Basel). 2020;10(9):1557. PubMed, PubMedCentral, CrossRef
  14. Martínez-Fernández G, Abecia L, Martín-García AI, Ramos-Morales E, Denman SE, Newbold CJ, Molina-Alcaide E, Yáñez-Ruiz DR. Response of the rumen archaeal and bacterial populations to anti-methanogenic organosulphur compounds in continuous-culture fermenters. FEMS Microbiol Ecol. 2015;91(8):fiv079. PubMed, CrossRef
  15. Leichert LI, Jakob U. Global methods to monitor the thiol-disulfide state of proteins in vivo. Antioxid Redox Signal. 2006;8(5-6):763-772. PubMed, CrossRef
  16. Leontiev R, Hohaus N, Jacob C, Gruhlke MCH, Slusarenko AJ. A Comparison of the Antibacterial and Antifungal Activities of Thiosulfinate Analogues of Allicin. Sci Rep. 2018;8(1):6763. PubMed, PubMedCentral, CrossRef
  17. Mampuys P, McElroy СR, Clark JH, Orru RVA, Maes BUW. Thiosulfonates as Emerging Reactants: Synthesis and Applications. Adv Synt Catal. 2020;362(1):3-64. CrossRef
  18. Lubenets V, Stadnytska N, Baranovych D, Vasylyuk S, Karpenko O, Havryliak V, Novikov V. Thiosulfonates: the prospective substances against fungal infections. In: Fungal Infection. Ed. By É. S. de Loreto and J. S. M. Tondolo. Intech Open, 2019. 1–24. CrossRef
  19. Lubenets V, Vasylyuk S, Monka N, Bolibrukh Kh, Komarovska-Porokhnyavets O, Baranovych D, Musyanovych R, Zaczynska E, Czarny A, Nawrot U, Novikov V. Synthesis and antimicrobial properties of 4-acylaminobenzenethiosulfoacid S-esters. Saudi Pharm J. 2017;25(2):266-274.
    PubMed, PubMedCentral, CrossRef
  20. Oriabinska LB, Starovoitova SO, Vasylyuk SV, Novikov VP, Lubenets VI. Ethylthiosulfanilate effect on Candida tropicalis. Ukr Biochem J. 2017;89(5):70-76. CrossRef
  21. Halenova TI, Nikolaeva IV, Nakonechna AV, Bolibrukh KB, Monka NY, Lubenets VI, Savchuk OM, Novikov VP, Ostapchenko LI. The search of compounds with antiaggregation activity among S-esters of thiosulfonic acids. Ukr Biochem J. 2015;87(5):83-92. CrossRef
  22. Lubenets VI, Parashchyn ZhD, Vasylyuk SV, Novikov VP. The S-methyl-(2-methoxycarbonylamino-benzimidazole-5) thiosulfonate as potential anticancer agents. Glob J Pharm Pharm Sci. 2017;3(2):27-29. CrossRef
  23. Dmitryjuk M, Szczotko M, Kubiak K, Trojanowicz R, Parashchyn Z, Khomitska H, Lubenets V. S-Methyl-(2-Methoxycarbonylamino-Benzimidazole-5) Thiosulfonate as a Potential Antiparasitic Agent-Its Action on the Development of Ascaris suum Eggs In Vitro. Pharmaceuticals (Basel). 2020;13(11):332. PubMed, PubMedCentral, CrossRef
  24. Pylypets AZ, Iskra RYa, Havryliak VV, Nakonechna AV, Novikov VP, Lubenets VI. Effеcts of thiosulfonates on the lipid composition of rat tissues. Ukr Biochem J. 2017;89(6):56-62. CrossRef
  25. Smith M, Hunter R, Stellenboom N, Kusza DA, Parker MI, Hammouda ANH, Jackson G, Kaschula CH. The cytotoxicity of garlic-related disulphides and thiosulfonates in WHCO1 oesophageal cancer cells is dependent on S-thiolation and not production of ROS. Biochim Biophys Acta. 2016;1860(7):1439-1449. PubMed, CrossRef
  26. Banya AR, Karpenko OY, Lubenets VI, Baranov VI, Novikov VP, Karpenko OV. Influence of surface-active rhamnolipid biocomplex and ethylthiosulfanilate on growth and biochemical parameters of plants in oil contaminated soil. Biotechnologia Acta. 2015;8(5):71-77. CrossRef
  27. Michiels C, Remacle J. Cytotoxicity of linoleic acid peroxide, malondialdehyde and 4-hydroxynonenal towards human fibroblasts. Toxicology. 1991;66(2):225-234. PubMed, CrossRef
  28. Yaremkevych H, Polischuk I, Mandzynets, Bura M, Sanagurskyi D, Lubenets V, Novikov V. Analysis of variance of inflence of thiosulphonic acid derivatives on the Na+,K+-ATPase of loach embryos in vitro. Visnyk Lviv Univ Ser Biol. 2011;(57):38-46. (In Ukrainian).
  29. Lubenets V, Karpenko O, Ponomarenko M, Zahoriy G, Krychkovska A, Novikov V. Development of new antimicrobial compositions of thiosulfonate structure. Сhemistry Chem Technol. 2013;7(2):119-124. CrossRef
  30. Kotyk B, Iskra R, Sushko O, Slivinska O, Klymets G, Buchko O, Pylypets A, Pryimych V. Effect of ethylthiosulfаnylate and chromium (VI) on the pro/antioxidant system in rats blood. Anim Biol. 2019;21(4):38-45. CrossRef
  31. Kotyk BІ, Iskra RYa, Slivinska OM, Liubas NM, Pylypets AZ, Lubenets VI, Pryimych VI. Effects of ethylthiosulfanylate and chromium (VI) on the state of pro/antioxidant system in rat liver. Ukr Biochem J. 2020;92(5):78-86. CrossRef
  32. Dubinina EE, Salnikova LA, Efiova LF. Activity and isoenzyme spectrum of human plasma and erythrocyte superoxide dismutase. Lab Delo. 1983;(10):30-33. (In Russian). PubMed
  33. Korolyuk MA, Ivanova LI, Mayorova IG, Tokarev VYe. A method of determining catalase activity. Lab Delo. 1988;(1):16-19. (In Russian). PubMed
  34. Moin VM. A simple and specific method for determining glutathione peroxidase activity in erythrocytes. Lab Delo. 1986;(12):724-727. (In Russian).
    PubMed
  35. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70-77. PubMed, CrossRef
  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275. PubMed
  37. Stubbe J. Controlling radical reactions. Nature. 1994;370(6490):502. CrossRef
  38. Kao MPC, Ang DSC, Pall A, Struthers AD. Oxidative stress in renal dysfunction: mechanisms, clinical sequelae and therapeutic options. J Hum Hypertens. 2010;24(1):1-8. PubMed, CrossRef
  39. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54(4):287-293. CrossRef
  40. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev. 2014;114(7):3854-3918. PubMed, PubMedCentral, CrossRef
  41. Heck DE, Shakarjian M, Kim HD, Laskin JD, Vetrano AM. Mechanisms of oxidant generation by catalase. Ann N Y Acad Sci. 2010;1203:120-125. PubMed, PubMedCentral, CrossRef
  42. Salyha NO. Activity of the glutathione system of antioxidant defense in rats under the action of L-glutamic acid. Ukr Biokhim Zhurn. 2013;85(4):40-47. (In Ukrainian). PubMed, CrossRef
  43. Cacciatore I, Cornacchia C, Pinnen F, Mollica A, Di Stefano A. Prodrug approach for increasing cellular glutathione levels. Molecules. 2010;15(3):1242-1264. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.