Ukr.Biochem.J. 2024; Том 96, № 1, січень-лютий, c. 3-21

doi: https://doi.org/10.15407/ubj96.01.005

Формування фосфатидної кислоти та передача сигналів у клітинах рослин

Я. С. Колесников, С. В. Кретинін, В. С. Кравець, Я. К. Бухонська*

Інститут біоорганічної хімії та нафтохімії ім. В. П. Кухаря НАН України, Київ;
*e-mail: yasya.yaroslavka@gmail.com

Отримано: 07 листопада 2023; Виправлено: 18 грудня 2023;
Затверджено: 01 лютого 2024; Доступно онлайн: 26 лютого 2024

В огляді представлено оновлену інформацію про структуру, локалізацію та регуляцію ензимів формування фосфатидних кислот (ФК) фосфоліпази D, фосфоінозитид-специфічної та неспецифічної фосфоліпаз С та діацилгліцеролкіназ. Обговорюється специфічна роль ФК та ензимів, що продукують ФК, у процесах трансдукції сигналів у рослинах під час стресу.

Ключові слова: , , , , ,


Посилання:

  1. Kolesnikov Y, Kretynin S, Bukhonska Y, Pokotylo I, Ruelland E, Martinec J, Kravets V. Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations. Int J Mol Sci. 2022;23(6):3227. PubMed, PubMedCentral, CrossRef
  2. Yao S, Kim SC, Li J, Tang S, Wang X. Phosphatidic acid signaling and function in nuclei. Prog Lipid Res. 2024;93:101267. PubMed, PubMedCentral, CrossRef
  3. Vaz Dias F, Serrazina S, Vitorino M, Marchese D, Heilmann I, Godinho M, Rodrigues M, Malhó R. A role for diacylglycerol kinase 4 in signalling crosstalk during Arabidopsis pollen tube growth. New Phytol. 2019;222(3):1434-1446. PubMed, CrossRef
  4. Li T, Xiao X, Liu Q, Li W, Li L, Zhang W, Munnik T, Wang X, Zhang Q. Dynamic responses of PA to environmental stimuli imaged by a genetically encoded mobilizable fluorescent sensor. Plant Commun. 2023;4(3):100500. PubMed, PubMedCentral, CrossRef
  5. Guan B, Jiang YT, Lin DL, Lin WH, Xue HW. Phosphatidic acid suppresses autophagy through competitive inhibition by binding GAPC (glyceraldehyde-3-phosphate dehydrogenase) and PGK (phosphoglycerate kinase) proteins. Autophagy. 2022;18(11):2656-2670. PubMed, PubMedCentral, CrossRef
  6. Pandit S, Goel R, Mishra G. Phosphatidic acid binds to and stimulates the activity of ARGAH2 from Arabidopsis. Plant Physiol Biochem. 2022;185:344-355. PubMed, CrossRef
  7. Cao H, Gong R, Yuan S, Su Y, Lv W, Zhou Y, Zhang Q, Deng X, Tong P, Liang S, Wang X, Hong Y. Phospholipase Dα6 and phosphatidic acid regulate gibberellin signaling in rice. EMBO Rep. 2021;22(10):e51871. PubMed, PubMedCentral, CrossRef
  8. Takai Y, Hasi RY, Matsumoto N, Fujita C, Ali H, Hayashi J, Kawakami R, Aihara M, Ishikawa T, Imai H, Wakida M, Ando K, Tanaka T. Degradation of glycosylinositol phosphoceramide during plant tissue homogenization. J Biochem. 2023;175(1):115-124. PubMed, CrossRef
  9. Hu Z, Shi J, Feng S, Wu X, Shao S, Shi K. Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO2 and temperature in tomato. Hortic Res. 2022;10(1):uhac242. PubMed, PubMedCentral, CrossRef
  10. Zhang H, Yu Y, Wang S, Yang J, Ai X, Zhang N, Zhao X, Liu X, Zhong C, Yu H. Genome-wide characterization of phospholipase D family genes in allotetraploid peanut and its diploid progenitors revealed their crucial roles in growth and abiotic stress responses. Front Plant Sci. 2023;14:1102200. PubMed, PubMedCentral, CrossRef
  11. Fang S, Han X, Yuan P, Song C, Song S, Jiao J, Wang M, Zheng X, Bai T. Genome-wide analysis of the apple PLD gene family and a functional characterization of MdPLD17 in drought tolerance. Sci Horticult. 2023;321:112311. CrossRef
  12. Wei J, Shao W, Liu X, He L, Zhao C, Yu G, Xu J. Genome-wide identification and expression analysis of phospholipase D gene in leaves of sorghum in response to abiotic stresses. Physiol Mol Biol Plants. 2022;28(6):1261-1276. PubMed, PubMedCentral, CrossRef
  13. Sadat MA, Ullah MW, Hossain MS, Ahmed B, Bashar KK. Genome-wide in silico identification of phospholipase D (PLD) gene family from Corchorus capsularis and Corchorus olitorius: reveals their responses to plant stress. J Genet Eng Biotechnol. 2022;20(1):28. PubMed, PubMedCentral, CrossRef
  14. Yuan Y, Yu J, Kong L, Zhang W, Hou X, Cui G. Genome-wide investigation of the PLD gene family in alfalfa (Medicago sativa L.): identification, analysis and expression. BMC Genomics. 2022;23(1):243. PubMed, PubMedCentral, CrossRef
  15. Laureano G, Santos C, Gouveia C, Matos AR, Figueiredo A. Grapevine-associated lipid signalling is specifically activated in an Rpv3 background in response to an aggressive P. viticola Pathovar. Cells. 2023;12(3):394 PubMed, PubMedCentral, CrossRef
  16. Hong K, Zhang L, Zhan R, Huang B, Song K, Jia Z. Identification and characterization of phospholipase D genes putatively involved in internal browning of pineapple during postharvest storage. Front Plant Sci. 2017;8:913. PubMed, PubMedCentral, CrossRef
  17. Pejchar P, Sekereš J, Novotný O, Žárský V, Potocký M. Functional analysis of phospholipase Dδ family in tobacco pollen tubes. Plant J. 2020;103(1):212-226. PubMed, CrossRef
  18. Liu P, Gu J, Cui X, Fu H, Wang F, Qi M, Sun Z, Li T, Liu Y. Genome-wide investigation of the phospholipase C gene family in Solanum lycopersicum and abiotic stress analysis. Environ Exp Bot. 2023;210:105336. CrossRef
  19. Zhu J, Zhou Y, Li J, Li H. Genome-wide investigation of the phospholipase C gene family in Zea mays. Front Genet. 2021;11:611414. PubMed, PubMedCentral, CrossRef
  20. Zhu L, Dou L, Shang H, Li H, Yu J, Xiao G. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience. 2021;24(3):102199. PubMed, PubMedCentral, CrossRef
  21. Fan R, Zhao F, Gong Z, Chen Y, Yang B, Zhou C, Zhang J, Du Z, Wang X, Yin P, Guo L, Liu Z. Insights into the mechanism of phospholipid hydrolysis by plant non-specific phospholipase C. Nat Commun. 2023;14(1):194. PubMed, PubMedCentral, CrossRef
  22. Kanchan M, Ramkumar TR, Himani, Sembi JK. Genome-wide characterization and expression profiling of the Phospholipase C (PLC) gene family in three orchids of economic importance. J Genet Eng Biotechnol. 2021;19(1):124. PubMed, PubMedCentral, CrossRef
  23. Yeken MZ, Özer G, Çiftçi V. Genome-wide identification and expression analysis of DGK (Diacylglycerol Kinase) genes in common bean. J Plant Growth Regul. 2023;42:2558-2569. CrossRef
  24. Tang F, Xiao Z, Sun F, Shen S, Chen S, Chen R, Zhu M, Zhang Q, Du H, Lu K, Li J, Qu C. Genome-wide identification and comparative analysis of diacylglycerol kinase (DGK) gene family and their expression profiling in Brassica napus under abiotic stress. BMC Plant Biol. 2020;20(1):473.
    PubMed, PubMedCentral, CrossRef
  25. Ge H, Chen C, Jing W, Zhang Q, Wang H, Wang R, Zhang W. The rice diacylglycerol kinase family: functional analysis using transient RNA interference. Front Plant Sci. 2012;3:60. PubMed, PubMedCentral, CrossRef
  26. Carther KF, Ketehouli T, Ye N, Yang YH, Wang N, Dong YY, Yao N, Liu XM, Liu WC, Li XW, Wang FW, Li HY. Comprehensive genomic analysis and expressionprofiling of diacylglycerol kinase (DGK) gene family in soybean (Glycine max) under abiotic stresses. Int J Mol Sci. 2019;20(6):1361. PubMed, PubMedCentral, CrossRef
  27. Zhang G, Yang J, Chen X, Zhao D, Zhou X, Zhang Y, Wang X, Zhao J. Phospholipase D- and phosphatidic acid-mediated phospholipid metabolism and signaling modulate symbiotic interaction and nodulation in soybean (Glycine max). Plant J. 2021;106(1):142-158. PubMed, CrossRef
  28. Ma C, Zhang Q, Lv J, Qiao K, Fan S, Ma Q, Zhang C. Genome-wide analysis of the phospholipase D family in five cotton species, and potential role of GhPLD2 in fiber development and anther dehiscence. Front Plant Sci. 2021;12:728025. PubMed, PubMedCentral, CrossRef
  29. Cao H, Liu Q, Liu X, Ma Z, Zhang J, Li X, Shen L, Yuan J, Zhang Q. Phosphatidic acid regulates ammonium uptake by interacting with AMMONIUM TRANSPORTER 1;1 in Arabidopsis. Plant Physiol. 2023;193(3):1954-1969. PubMed, CrossRef
  30. Xing J, Li X, Wang X, Lv X, Wang L, Zhang L, Zhu Y, Shen Q, Baluška F, Šamaj J, Lin J. Secretion of phospholipase Dδ functions as a regulatory mechanism in plant innate immunity. Plant Cell. 2019;31(12):3015-3032. PubMed, PubMedCentral, CrossRef
  31. Shimamura R, Ohashi Y, Taniguchi YY, Kato M, Tsuge T, Aoyama T. Arabidopsis PLDζ1 and PLDζ2 localize to post-Golgi membrane compartments in a partially overlapping manner. Plant Mol Biol. 2022;108(1-2):31-49. PubMed, CrossRef
  32. Schlöffel MA, Salzer A, Wan W., van Wijk R, Šemanjski M, Symeonidi E, Slaby P, Kilian J, Maček B, Munnik T, Gust AA. The BIR2/BIR3-interacting phospholipase D gamma 1 negatively regulates plant immunity. Plant Physiol. 2019;183(1):371-384. CrossRef
  33. Ying S, Scheible WR, Lundquist PK. A stress-inducible protein regulates drought tolerance and flowering time in Brachypodium and Arabidopsis. Plant Physiol. 2023;191(1):643-659. PubMed, PubMedCentral, CrossRef
  34. Zhang K, Shi W, Zheng X, Liu X, Wang L, Riemann M, Heintz D, Nick P. A rice tubulin tyrosine ligase like 12 regulates phospholipase D activity and tubulin synthesis. Plant Sci. 2022;316:111155. PubMed, CrossRef
  35. Zhang X, Tang H, Du H, Liu Z, Bao Z, Shi Q. Comparative N-glycoproteome analysis provides novel insights into the regulation mechanism in tomato (solanum lycopersicum L.) During fruit ripening process. Plant Sci. 2020;293:110413. PubMed, CrossRef
  36. Lin J, Zhao J, Du L, Wang P, Sun B, Zhang C, Shi Y, Li H, Sun H. Activation of MAPK-mediated immunity by phosphatidic acid in response to positive-strand RNA viruses. Plant Commun. 2024;5(1):100659. PubMed, CrossRef
  37. Zhang Y, Liu R, Zhou Y, Wang S, Zhang B, Kong J, Zheng S, Yang N. PLDα1 and GPA1 are involved in the stomatal closure induced by Oridonin in Arabidopsis thaliana. Funct Plant Biol. 2021;48(10):1005-1016. PubMed, CrossRef
  38. Yang J, Zheng Q, Wang Y, Wu T, Li W, Qiu C, Xu X, Zhang X, Han Z, Zhang X. GSH-dependent PTMs of proteins differ significantly between ontogenetic phases of apple trees. J Plant Growth Regul. 2023;42:3405-3418. CrossRef
  39. Nounurai P, Afifah A, Kittisenachai S, Roytrakul S. Phosphorylation of CAD1, PLDdelta, NDT1, RPM1 Proteins Induce Resistance in Tomatoes Infected by Ralstonia solanacearum. Plants (Basel). 2022;11(6):726. PubMed, PubMedCentral, CrossRef
  40. Zhou Y, Zhou DM, Yu WW, Shi LL, Zhang Y, Lai YX, Huang LP, Qi H, Chen QF, Yao N, Li JF, Xie LJ, Xiao S. Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. Plant Cell. 2022;34(2):889-909. PubMed, PubMedCentral, CrossRef
  41. Amagai A, Honda Y, Ishikawa S, Hara Y, Kuwamura M, Shinozawa A, Sugiyama N, Ishihama Y, Takezawa D, Sakata Y, Shinozaki K, Umezawa T. Phosphoproteomic profiling reveals ABA-responsive phosphosignaling pathways in Physcomitrella patens. Plant J. 2018;94(4):699-708. PubMed, CrossRef
  42. Shinozawa A, Otake R, Takezawa D, Umezawa T, Komatsu K, Tanaka K, Amagai A, Ishikawa S, Hara Y, Kamisugi Y, Cuming AC, Hori K, Ohta H, Takahashi F, Shinozaki K, Hayashi T, Taji T, Sakata Y. SnRK2 protein kinases represent an ancient system in plants for adaptation to a terrestrial environment. Commun Biol. 2019;2:30. PubMed, PubMedCentral, CrossRef
  43. Hsu CC, Zhu Y, Arrington JV, Paez JS, Wang P, Zhu P, Chen IH, Zhu JK, Tao WA. Universal plant phosphoproteomics workflow and its application to tomato signaling in response to cold stress. Mol Cell Proteomics. 2018;17(10):2068-2080. PubMed, PubMedCentral, CrossRef
  44. Wang C, Guo H, He X, Zhang S, Wang J, Wang L, Guo D, Guo X. Scaffold protein GhMORG1 enhances the resistance of cotton to Fusarium oxysporum by facilitating the MKK6-MPK4 cascade. Plant Biotechnol J. 2020;18(6):1421-1433. PubMed, PubMedCentral, CrossRef
  45. Heidari P, Puresmaeli F, Vafaee Y, Ahmadizadeh M, Ensani M, Ahmadinia H. Comparative analysis of phospholipase D (PLD) gene family in Camelina sativa and Brassica napus and its responses in camelina seedlings under salt stress. Agronomy. 2023;13(10):2616. CrossRef
  46. Chen X, Xu Q, Duan Y, Liu H, Chen X, Huang J, Luo C, Zhou DX, Zheng L. Ustilaginoidea virens modulates lysine 2-hydroxyisobutyrylation in rice flowers during infection. J Integr Plant Biol. 2021;63(10):1801-1814. PubMed, CrossRef
  47. Pan C, Li X, Yao S, Luo S, Liu S, Wang A, Xiao D, Zhan J, He L. S-nitrosated proteomic analysis reveals the regulatory roles of protein S-nitrosation and S-nitrosoglutathione reductase during Al-induced PCD in peanut root tips. Plant Sci. 2021;308:110931. PubMed, CrossRef
  48. Liao X, Li Y, Hu Z, Lin Y, Zheng B, Ding J. Poplar acetylome profiling reveals lysine acetylation dynamics in seasonal bud dormancy release. Plant Cell Environ. 2021;44(6):1830-1845. PubMed, CrossRef
  49. Song P, Jia Q, Chen L, Jin X, Xiao X, Li L, Chen H, Qu Y, Su Y, Zhang W, Zhang Q. Involvement of Arabidopsis phospholipase D δ in regulation of ROS-mediated microtubule organization and stomatal movement upon heat shock. J Exp Bot. 2020;71(20):6555-6570. PubMed, CrossRef
  50. Wilmowicz E, Kućko A, Pokora W, Kapusta M, Jasieniecka-Gazarkiewicz K, Tranbarger TJ, Wolska M, Panek K. EPIP-evoked modifications of redox, lipid, and pectin homeostasis in the abscission zone of lupine flowers. Int J Mol Sci. 2021;22(6):3001. PubMed, PubMedCentral, CrossRef
  51. Ribeiro DG, Bezerra AC, Santos IR, Grynberg P, Fontes W, de Souza Castro M, de Sousa MV, Lisei-de-Sá ME, Grossi-de-Sá MF, Franco OL, Mehta A. Proteomic insights of cowpea response to combined biotic and abiotic stresses. Plants (Basel). 2023;12(9):1900. PubMed, PubMedCentral, CrossRef
  52. Prasad K, Yogendra K, Sanivarapu H, Rajasekaran K, Cary JW, Sharma KK, Bhatnagar-Mathur P. Multiplexed host-induced gene silencing of Aspergillus flavus genes confers aflatoxin resistance in groundnut. Toxins (Basel). 2023;15(5):319. PubMed, PubMedCentral, CrossRef
  53. Oblozinsky M, Bezakova L, Mansfeld J, Heilmann I, Ulbrich-Hofmann R. Differences in the effect of phosphatidylinositol 4,5-bisphosphate on the hydrolytic and transphosphatidylation activities of membrane-bound phospholipase D from poppy seedlings. Plant Physiol Biochem. 2013;69:39-42. PubMed, CrossRef
  54. Deng X, Yuan S, Cao H, Lam SM, Shui G, Hong Y, Wang X. Phosphatidylinositol-hydrolyzing phospholipase C4 modulates rice response to salt and drought. Plant Cell Environ. 2019;42(2):536-548. PubMed, CrossRef
  55. Yu M, Cao C, Yin X, Liu X, Yang D, Gong C, Wang H, Wu Y. The rice phosphoinositide-specific phospholipase C3 is involved in responses to osmotic stresses via modulating ROS homeostasis. Plant Sci. 2021;313:111087. PubMed, CrossRef
  56. Sagar S, Biswas DK, Singh A. Genomic and expression analysis indicate the involvement of phospholipase C family in abiotic stress signaling in chickpea (Cicer arietinum). Gene. 2020;753:144797.  PubMed, PubMedCentral, CrossRef
  57. Li L, Wang F, Yan P, Jing W, Zhang C, Kudla J, Zhang W. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice. New Phytol. 2017;214(3):1172-1187. PubMed, CrossRef
  58. Wu Q, Fan Z, Qi F, Li D, Zhang Z, Chen Y, Huang Y, Lin Y, Lai Z. Genome-wide identification, evolution analysis of PI-PLC family and their expression patterns in response to different hormones and growth in banana (Musa L.). Trop Plant Biol. 2023;16:187-198 CrossRef
  59. Kong J, Chen R, Liu R, Wang W, Wang S, Zhang J, Yang N. PLC1 mediated Cycloastragenol-induced stomatal movement by regulating the production of NO in Arabidopsis thaliana. BMC Plant Biol. 2023;23(1):571. PubMed, PubMedCentral, CrossRef
  60. Marques DN, Stolze SC, Harzen A, Nogueira ML, Batagin-Piotto KD, Piotto FA, Mason C, Azevedo RA, Nakagami H. Comparative phosphoproteomic analysis of tomato genotypes with contrasting cadmium tolerance. Plant Cell Rep. 2021;40(10):2001-2008. PubMed, CrossRef
  61. Lu ZS, Chen QS, Zheng QX, Shen JJ, Luo ZP, Fan K, Xu SH, Shen Q, Liu PP. Proteomic and phosphoproteomic analysis in tobacco mosaic virus-infected tobacco (Nicotiana tabacum). Biomolecules. 2019;9(2):39. PubMed, PubMedCentral, CrossRef
  62. Liu Z, Lv J, Liu Y, Wang J, Zhang Z, Chen W, Song J, Yang B, Tan F, Zou X, Ou L. Comprehensive phosphoproteomic analysis of pepper fruit development provides insight into plant signaling transduction. Int J Mol Sci. 2020;21(6):1962. PubMed, PubMedCentral, CrossRef
  63. Han R, Wei Y, Xie Y, Liu L, Jiang C, Yu Y. Quantitative phosphoproteomic analysis provides insights into the aluminum-responsiveness of Tamba black soybean. PLoS One. 2020;15(8):e0237845. PubMed, PubMedCentral, CrossRef
  64. Smith S, Zhu S, Joos L, Roberts I, Nikonorova N, Vu LD, Stes E, Cho H, Larrieu A, Xuan W, Goodall B, van de Cotte B, Waite JM, Rigal A, Ramans Harborough S, Persiau G, Vanneste S, Kirschner GK, Vandermarliere E, Martens L, Stahl Y, Audenaert D, Friml J, Felix G, Simon R, Bennett MJ, Bishopp A, De Jaeger G, Ljung K, Kepinski S, Robert S, Nemhauser J, Hwang I, Gevaert K, Beeckman T, De Smet I. The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis. Mol Cell Proteomics. 2020;19(8):1248-1262. PubMed, PubMedCentral, CrossRef
  65. Sun J, Qiu C, Qian W, Wang Y, Sun L, Li Y, Ding Z. Ammonium triggered the response mechanism of lysine crotonylome in tea plants. BMC Genomics. 2019;20(1):340. PubMed, PubMedCentral, CrossRef
  66. Li Q, Zhang Y, Huang J, Wu Z, Tang L, Huang L, Zhang X. Basic strong cation exchange chromatography, BaSCX, a highly efficient approach for C-terminomic studies using lysargiNase digestion. Anal Chem. 2020;92(7):4742-4748. PubMed, CrossRef
  67. Wang N, Shi Y, Jiang Q, Li H, Fan W, Feng Y, Li L, Liu B, Lin F, Jing W, Zhang W, Shen L. A 14-3-3 protein positively regulates rice salt tolerance by stabilizing phospholipase C1. Plant Cell Environ. 2023;46(4):1232-1248. PubMed, CrossRef
  68. Bovin AD, Pavlova OA, Dolgikh AV, Leppyanen IV, Dolgikh EA. The role of heterotrimeric G-protein beta subunits during nodulation in Medicago truncatula Gaertn and Pisum sativum L. Front Plant Sci. 2022;12:808573. PubMed, PubMedCentral, CrossRef
  69. She J, Yan H, Yang J, Xu W, Su Z. croFGD: Catharanthus roseus functional genomics database. Front Genet. 2019;10:238. PubMed, PubMedCentral, CrossRef
  70. Abd-El-Haliem AM, Vossen JH, van Zeijl A, Dezhsetan S, Testerink C, Seidl MF, Beck M, Strutt J, Robatzek S, Joosten MHAJ. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity. Biochim Biophys Acta. 2016;1861(9 Pt B):1365-1378. PubMed, CrossRef
  71. Ruelland E, Cantrel C, Gawer M, Kader JC, Zachowski A. Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol. 2002;130(2):999-1007. PubMed, PubMedCentral, CrossRef
  72. Yan H, Mao P. Comparative time-course physiological responses and proteomic analysis of melatonin priming on promoting germination in aged oat (Avena sativa L.) seeds. Int J Mol Sci. 2021;22(2):811. PubMed, PubMedCentral, CrossRef
  73. Delage E, Ruelland E, Guillas I, Zachowski A, Puyaubert J. Arabidopsis type-III phosphatidylinositol 4-kinases β1 and β2 are upstream of the phospholipase C pathway triggered by cold exposure. Plant Cell Physiol. 2012;53(3):565-576. PubMed, CrossRef
  74. Yang D, Liu X, Yin X, Dong T, Yu M, Wu Y. Rice non-specific phospholipase C6 is involved in mesocotyl elongation. Plant Cell Physiol. 2021;62(6):985-1000. PubMed, CrossRef
  75. Hasi RY, Ishikawa T, Sunagawa K, Takai Y, Ali H, Hayashi J, Kawakami R, Yuasa K, Aihara M, Kanemaru K, Imai H, Tanaka T. Nonspecific phospholipase C3 of radish has phospholipase D activity towards glycosylinositol phosphoceramide. FEBS Lett. 2022;596(23):3024-3036. PubMed, CrossRef
  76. Cai G, Fan C, Liu S, Yang Q, Liu D, Wu J, Li J, Zhou Y, Guo L, Wang X. Nonspecific phospholipase C6 increases seed oil production in oilseed Brassicaceae plants. New Phytol. 2020;226(4):1055-1073. PubMed, CrossRef
  77. Song J, Zhou Y, Zhang J, Zhang K. Structural, expression and evolutionary analysis of the non-specific phospholipase C gene family in Gossypium hirsutum. BMC Genomics. 2017;18(1):979. PubMed, PubMedCentral, CrossRef
  78. Li L, Li N, Qi X, Bai Y, Chen Q, Fang H, Yu X, Liu D, Liang C, Zhou Y. Characterization of the Glehnia littoralis Non-specific Phospholipase C Gene GlNPC3 and Its Involvement in the Salt Stress Response. Front Plant Sci. 2021;12:769599. PubMed, PubMedCentral, CrossRef
  79. Wang K, Li YL, Chen S. Genome-wide identification of phospholipase C related to chilling injury in peach fruit. J Plant Biochem Biotechnol. 2021;30:452-461. CrossRef
  80. Krčková Z, Kocourková D, Daněk M, Brouzdová J, Pejchar P, Janda M, Pokotylo I, Ott PG, Valentová O, Martinec J. The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack. Ann Bot. 2018;121(2):297-310. PubMed, PubMedCentral, CrossRef
  81. Yang B, Zhang K, Jin X, Yan J, Lu S, Shen Q, Guo L, Hong Y, Wang X, Guo L. Acylation of non-specific phospholipase C4 determines its function in plant response to phosphate deficiency. Plant J. 2021;106(6):1647-1659. PubMed, CrossRef
  82. Jia X, Si X, Jia Y, Zhang H, Tian S, Li W, Zhang K, Pan Y. Genomic profiling and expression analysis of the diacylglycerol kinase gene family in heterologous hexaploid wheat. PeerJ. 2021;9:e12480. PubMed, PubMedCentral, CrossRef
  83. Platre MP, Noack LC, Doumane M, Bayle V, Simon MLA, Maneta-Peyret L, Fouillen L, Stanislas T, Armengot L, Pejchar P, Caillaud MC, Potocký M, Čopič A, Moreau P, Jaillais Y. A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Dev Cell. 2018;45(4):465-480.e11.
    PubMed, CrossRef
  84. Angkawijaya AE, Nguyen VC, Gunawan F, Nakamura Y. A Pair of Arabidopsis diacylglycerol kinases essential for gametogenesis and endoplasmic reticulum phospholipid metabolism in leaves and flowers. Plant Cell. 2020;32(8):2602-2620. PubMed, PubMedCentral, CrossRef
  85. Tan WJ, Yang YC, Zhou Y, Huang LP, Xu L, Chen QF, Yu LJ, Xiao S. DIACYLGLYCEROL ACYLTRANSFERASE and DIACYLGLYCEROL KINASE Modulate Triacylglycerol and Phosphatidic Acid Production in the Plant Response to Freezing Stress. Plant Physiol. 2018;177(3):1303-1318.
    PubMed, PubMedCentral, CrossRef
  86. Scholz P, Pejchar P, Fernkorn M, Škrabálková E, Pleskot R, Blersch K, Munnik T, Potocký M, Ischebeck T. DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. New Phytol. 2022;233(5):2185-2202. PubMed, CrossRef
  87. Li Y, Tan Y, Shao Y, Li M, Ma F. Comprehensive genomic analysis and expression profiling of diacylglycerol kinase gene family in Malus prunifolia (Willd.) Borkh. Gene. 2015;561(2):225-234. PubMed, CrossRef
  88. Song J, Shang L, Wang X, Xing Y, Xu W, Zhang Y, Wang T, Li H, Zhang J, Ye Z. MAPK11 regulates seed germination and ABA signaling in tomato by phosphorylating SnRKs. J Exp Bot. 2021;72(5):1677-1690. PubMed, CrossRef
  89. Haj Ahmad F, Wu XN, Stintzi A, Schaller A, Schulze WX. The systemin signaling cascade as derived from time course analyses of the systemin-responsive phosphoproteome. Mol Cell Proteomics. 2019;18(8):1526-1542. PubMed, PubMedCentral, CrossRef
  90. Chen Q, Qu M, Chen Q, Meng X, Fan H. Phosphoproteomics analysis of the effect of target of rapamycin kinase inhibition on Cucumis sativus in response to Podosphaera xanthii. Plant Physiol Biochem. 2023;197:107641. PubMed, CrossRef
  91. Qin X, Li P, Lu S, Sun Y, Meng L, Hao J, Fan S. Phosphoproteomic analysis of lettuce (Lactuca sativa L.) reveals starch and sucrose metabolism functions during bolting induced by high temperature. PLoS One. 2020;15(12):e0244198. PubMed, PubMedCentral, CrossRef
  92. Zhou Q, Meng Q, Tan X, Ding W, Ma K, Xu Z, Huang X, Gao H. Protein phosphorylation changes during systemic acquired resistance in Arabidopsis thaliana. Front Plant Sci. 2021;12:748287. PubMed, PubMedCentral, CrossRef
  93. Kong XX, Mei JW, Zhang J, Liu X, Wu JY, Wang CL. Turnover of diacylglycerol kinase 4 by cytoplasmic acidification induces vacuole morphological change and nuclear DNA degradation in the early stage of pear self-incompatibility response. J Integr Plant Biol. 2021;63(12):2123-2135. PubMed, CrossRef
  94. Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA. 2007;104(11):4730-4735. PubMed, PubMedCentral, CrossRef
  95. Altmann M, Altmann S, Rodriguez PA, Weller B, Elorduy Vergara L, Palme J, Marín-de la Rosa N, Sauer M, Wenig M, Villaécija-Aguilar JA, Sales J, Lin CW, Pandiarajan R, Young V, Strobel A, Gross L, Carbonnel S, Kugler KG, Garcia-Molina A, Bassel GW, Falter C, Mayer KFX, Gutjahr C, Vlot AC, Grill E, Falter-Braun P. Extensive signal integration by the phytohormone protein network. Nature. 2020;583(7815):271-276. PubMed, CrossRef
  96. Arabidopsis Interactome Mapping Consortium. Evidence for network evolution in an Arabidopsis interactome map. Science. 2011;333(6042):601-607. PubMed, PubMedCentral, CrossRef
  97. Cacas JL, Gerbeau-Pissot P, Fromentin J, Cantrel C, Thomas D, Jeannette E, Kalachova T, Mongrand S, Simon-Plas F, Ruelland E. Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein. Plant Cell Environ. 2017;40(4):585-598. PubMed, PubMedCentral, CrossRef
  98. Kalachova T, Škrabálková E, Pateyron S, Soubigou-Taconnat L, Djafi N, Collin S, Sekereš J, Burketová L, Potocký M, Pejchar P, Ruelland E. DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis. Plant Physiol. 2022;190(3):1978-1996. PubMed, PubMedCentral, CrossRef
  99. Janda M, Planchais S, Djafi N, Martinec J, Burketova L, Valentova O, Zachowski A, Ruelland E. Phosphoglycerolipids are master players in plant hormone signal transduction. Plant Cell Rep. 2013;32(6):839-851. PubMed, CrossRef
  100. van Hooren M, Darwish E, Munnik T. Stress- and phospholipid signalling responses in Arabidopsis PLC4-KO and -overexpression lines under salt- and osmotic stress. Phytochemistry. 2023;216:113862. PubMed, CrossRef
  101. Johansson ON, Fahlberg P, Karimi E, Nilsson AK, Ellerström M, Andersson MX. Redundancy among phospholipase D isoforms in resistance triggered by recognition of the Pseudomonas syringae effector AvrRpm1 in Arabidopsis thaliana. Front Plant Sci. 2014;5:639. PubMed, PubMedCentral, CrossRef
  102. Janda M, Ježková L, Nováková M, Valentová O, Burketová L, Šašek V. Identification of phospholipase D genes in Brassica napus and their transcription after phytohormone treatment and pathogen infection. Biol Plant. 2015;59:581-590. CrossRef
  103. Wang H, Yan Z, Yang M, Gu L. Genome-wide identification and characterization of the diacylglycerol kinase (DGK) gene family in Populus trichocarpa. Physiol Mol Plant Pathol. 2023;127:102121. CrossRef
  104. Li J, Wang J, Pang Q, Yan X. Analysis of N6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sugar beet (Beta vulgaris). Plant Sci. 2023;335:111794. PubMed, CrossRef
  105. Ben Othman A, Ellouzi H, Planchais S, De Vos D, Faiyue B, Carol P, Abdelly C, Savouré A. Phospholipases Dζ1 and Dζ2 have distinct roles in growth and antioxidant systems in Arabidopsis thaliana responding to salt stress. Planta. 2017;246(4):721-735. PubMed, CrossRef
  106. Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA, Brunoud G, Haring MA, Munnik T, Vernoux T, Testerink C. Halotropism is a response of plant roots to avoid a saline environment. Curr Biol. 2013;23(20):2044-2050. PubMed, CrossRef
  107. Kocourková D, Krčková Z, Pejchar P, Veselková Š, Valentová O, Wimalasekera R, Scherer GFE, Martinec J. The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J Exp Bot. 2011;62(11):3753-3763. PubMed, PubMedCentral, CrossRef
  108. Zhang Q, Lin F, Mao T, Nie J, Yan M, Yuan M, Zhang W. Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell. 2012;24(11):4555-4576. PubMed, PubMedCentral, CrossRef
  109. Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 2010;188(3):762-773. PubMed, CrossRef
  110. Wang P, Shen L, Guo J, Jing W, Qu Y, Li W, Bi R, Xuan W, Zhang Q, Zhang W. Phosphatidic acid directly regulates PINOID-dependent phosphorylation and activation of the PIN-FORMED2 auxin efflux transporter in response to salt stress. Plant Cell. 2019;31(1):250-271. PubMed, PubMedCentral, CrossRef
  111. Shen L, Zhuang B, Wu Q, Zhang H, Nie J, Jing W, Yang L, Zhang W. Phosphatidic acid promotes the activation and plasma membrane localization of MKK7 and MKK9 in response to salt stress. Plant Sci. 2019;287:110190. PubMed, CrossRef
  112. Im JH, Lee H, Kim J, Kim HB, Seyoung K, Kim BM, An CS. A salt stress-activated mitogen-activated protein kinase in soybean is regulated by phosphatidic acid in early stages of the stress response. J Plant Biol. 2012;55:303-309. CrossRef
  113. Im JH, Lee H Kim J, Kim HB, An CS. Soybean MAPK, GMK1 is dually regulated by phosphatidic acid and hydrogen peroxide and translocated to nucleus during salt stress. Mol Cells. 2012;34(3):271-278. PubMed, PubMedCentral, CrossRef
  114. Li J, Shen L, Han X, He G, Fan W, Li Y, Yang S, Zhang Z, Yang Y, Jin W, Wang Y, Zhang W, Guo Y. Phosphatidic acid-regulated SOS2 controls sodium and potassium homeostasis in Arabidopsis under salt stress. EMBO J. 2023;42(8):e112401. PubMed, PubMedCentral, CrossRef
  115. McLoughlin F, Arisz Steven A, Dekker Henk L, Kramer G, de Koster Chris G, Haring Michel A, Munnik T, Testerink C. Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem J. 2013;450(3):573-581. PubMed, CrossRef
  116. Korver RA, van den Berg T, Meyer AJ, Galvan-Ampudia CS, ten Tusscher KHWJ, Testerink C. Halotropism requires phospholipase Dζ1-mediated modulation of cellular polarity of auxin transport carriers. Plant Cell Environ. 2020;43(1):143-158. PubMed, PubMedCentral, CrossRef
  117. Huo C, Zhang B, Wang H, Wang F, Liu M, Gao Y, Zhang W, Deng Z, Sun D, Tang W. Comparative study of early cold-regulated proteins by two-dimensional difference gel electrophoresis reveals a key role for phospholipase Dα1 in mediating cold acclimation signaling pathway in rice. Mol Cell Proteomics. 2016;15(4):1397-1411. PubMed, PubMedCentral, CrossRef
  118. Kim SC, Yao S, Zhang Q, Wang X. Phospholipase Dδ and phosphatidic acid mediate heat-induced nuclear localization of glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Plant J. 2022;112(3):786-799. PubMed, PubMedCentral, CrossRef
  119. Annum N, Ahmed M, Imtiaz K, Mansoor S, Tester M, Saeed NA. 32Pi Labeled Transgenic Wheat Shows the Accumulation of Phosphatidylinositol 4,5-bisphosphate and Phosphatidic Acid Under Heat and Osmotic Stress. Front Plant Sci. 2022;13:881188. PubMed, PubMedCentral, CrossRef
  120. Mishkind M, Vermeer JEM, Darwish E, Munnik T. Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. Plant J. 2009;60(1):10-21. PubMed, CrossRef
  121. Krčková Z, Brouzdová J, Daněk M, Kocourková D, Rainteau D, Ruelland E, Valentová O, Pejchar P, Martinec J. Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress. Front Plant Sci. 2015;6:928.
    PubMed, PubMedCentral, CrossRef
  122. Klimecka M, Szczegielniak J, Godecka L, Lewandowska-Gnatowska E, Dobrowolska G, Muszyńska G. Regulation of wound-responsive calcium-dependent protein kinase from maize (ZmCPK11) by phosphatidic acid. Acta Biochim Pol. 2011;58(4):589-595. PubMed
  123. Bourtsala A, Farmaki T, Galanopoulou D. Phospholipases Dα and δ are involved in local and systemic wound responses of cotton (G. hirsutum). Biochem Biophys Rep. 2016;9:133-139. PubMed, PubMedCentral, CrossRef
  124. Premkumar A, Lindberg S, Lager I, Rasmussen U, Schulz A. Arabidopsis PLDs with C2-domain function distinctively in hypoxia. Physiol Plant. 2019;167(1):90-110. PubMed, cr id=”https://doi.org/10.1111/ppl.12874″]
  125. Lindberg S, Premkumar A, Rasmussen U, Schulz A, Lager I. Phospholipases AtPLDζ1 and AtPLDζ2 function differently in hypoxia. Physiol Plant. 2018;162(1):98-108. PubMed, CrossRef
  126. Fan B, Liao K, Wang LN, Shi LL, Zhang Y, Xu LJ, Zhou Y, Li JF, Chen YQ, Chen QF, Xiao S. Calcium-dependent activation of CPK12 facilitates its cytoplasm-to-nucleus translocation to potentiate plant hypoxia sensing by phosphorylating ERF-VII transcription factors. Mol Plant. 2023;16(6):979-998. PubMed, CrossRef
  127. Anthony RG, Khan S, Costa J, Pais MS, Bögre L. The Arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1. J Biol Chem. 2006;281(49):37536-37546. PubMed, CrossRef
  128. Li J, Henty-Ridilla JL, Staiger BH, Day B, Staiger CJ. Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. Nat Commun. 2015;6:7206. PubMed, PubMedCentral, CrossRef
  129. Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H, Ellerström M, Andersson MX. Arabidopsis phospholipase dδ is involved in basal defense and nonhost resistance to powdery mildew fungi. Plant Physiol. 2013;163(2):896-906. PubMed, PubMedCentral, CrossRef
  130.  D’Ambrosio JM, Couto D, Fabro G, Scuffi D, Lamattina L, Munnik T, Andersson MX, Álvarez ME, Zipfel C, Laxalt AM. Phospholipase C2 Affects MAMP-Triggered Immunity by Modulating ROS Production. Plant Physiol. 2017;175(2):970-981. PubMed, PubMedCentral, CrossRef
  131. Perk EA, Arruebarrena Di Palma A, Colman S, Mariani O, Cerrudo I, D’Ambrosio JM, Robuschi L, Pombo MA, Rosli HG, Villareal F, Laxalt AM. CRISPR/Cas9-mediated phospholipase C 2 knock-out tomato plants are more resistant to Botrytis cinerea. Planta. 2023;257(6):117. PubMed, CrossRef
  132. Takasato S, Bando T, Ohnishi K, Tsuzuki M, HikichiY, Kiba A. Phosphatidylinositol-phospholipase C3 negatively regulates the hypersensitive response via complex signaling with MAP kinase, phytohormones, and reactive oxygen species in Nicotiana benthamiana. J Exp Bot. 2023;74(15):4721-4735. PubMed, PubMedCentral, CrossRef
  133. Hunter K, Kimura S, Rokka A, Tran HC, Toyota M, Kukkonen JP, Wrzaczek M. CRK2 Enhances Salt Tolerance by Regulating Callose Deposition in Connection with PLD α1. Plant Physiol. 2019;180(4):2004-2021. PubMed, PubMedCentral, CrossRef
  134. Cao L, Wang W, Zhang W, Staiger CJ. Lipid signaling requires ROS production to elicit actin cytoskeleton remodeling during plant innate immunity. Int J Mol Sci. 2022;23(5):2447. PubMed, PubMedCentral, CrossRef
  135. Li W, Song T, Wallrad L, Kudla J, Wang X, Zhang W. Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nat Plants. 2019;5(9):1012-1021. PubMed, CrossRef
  136. D’Ambrosio JM, Gonorazky G, Sueldo DJ, Moraga J, Di Palma AA, Lamattina L, Collado IG, Laxalt AM. The sesquiterpene botrydial from Botrytis cinerea induces phosphatidic acid production in tomato cell suspensions. Planta. 2018;247(4):1001-1009.  PubMed, CrossRef
  137. Raho N, Ramirez L, Lanteri ML, Gonorazky G, Lamattina L, ten Have A, Laxalt AM. Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. J Plant Physiol. 2011;168(6):534-539. PubMed, CrossRef
  138. Janda M, Šašek V, Chmelařová H, Andrejch J, Nováková M, Hajšlová J, Burketová L, Valentová O. Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana. Front Plant Sci. 2015;6:59. PubMed, PubMedCentral, CrossRef
  139. Kasparovsky T, Blein JP, Mikes V. Ergosterol elicits oxidative burst in tobacco cells via phospholipase A2 and protein kinase C signal pathway. Plant Physiol Biochem. 2004;42(5):429-435. PubMed, CrossRef
  140. Serna-Sanz A, Parniske M, Peck SC. Phosphoproteome analysis of Lotus japonicus roots reveals shared and distinct components of symbiosis and defense. Mol Plant Microbe Interact. 2011;24(8):932-937. PubMed, CrossRef
  141. Vergnolle C, Vaultier MN, Taconnat ., Renou JP, Kader JC, Zachowski A, Ruelland E. The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol. 2005;139(3):1217-1233. PubMed, PubMedCentral, CrossRef
  142. Genva M, Fougère L, Bahammou D, Mongrand S, Boutté Y, Fouillen L. A global LC-MS2 -based methodology to identify and quantify anionic phospholipids in plant samples. Plant J. 2023.  PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.