Ukr.Biochem.J. 2024; Том 96, № 5, вересень-жовтень, c. 79-95

doi: https://doi.org/10.15407/ubj96.05.079

Показники вуглеводного обміну та стану антиоксидантної системи за проростання старого насіння пшениці та тритикале, обробленого донором H(2)S

Т. О. Ястреб1, О. І. Кокорев1, А. І. Дяченко2,
М. В. Шевченко3, М. М. Маренич4, Ю. Є. Колупаєв1,4*

1Інститут рослинництва ім. В. Я. Юр’єва НААН, Харків, Україна;
2Інститут клітинної біології та генетичної інженерії НАН України, Київ;
3Державний біотехнологічний університет, Харків, Україна;
4Полтавський державний аграрний університет, Україна
*e-mail: plant_biology@ukr.net

Отримано: 06 серпня 2024; Виправлено: 03 вересня 2024;
Затверджено: 07 жовтня 2024; Доступно онлайн: 28 жовтня 2024

Гідроген сульфід (H2S) є молекулою-газотрансмітером, яка бере участь у реалізації багатьох функцій рослинного організму, включно з проростанням насіння. Показано, що старіння насіння супроводжується окислювальним стресом і зниженням схожості. Вплив екзогенного H2S на проростання старого насіння злаків не досліджувався. Мета роботи полягала у дослідженні впливу праймування NaHS як донора H2S на насіння пшениці та тритикале, які попередньо зазнали природного старіння. Насіння озимої пшениці (Triticum aestivum) та озимого ×Triticosecale зберігалося в приміщенні протягом 4 років за змінних температури та вологості. Постаріле насіння обробляли 0,2-5 мМ розчином NaHS протягом 3 годин і пророщували в чашках Петрі протягом 3 днів. Як контроль використовували обробку водою (гідропраймінг). Визначали активність амілази в зерні, біомасу пагонів і коренів, вміст загальних цукрів, Н2О2, продуктів пероксидного окислення ліпідів та антоціанів, а також активність антиоксидантних ензимів у проростках. Показано, що після обробки донором H2S активність каталази і гваяколпероксидази, а також вміст антоціанів зростали лише в проростках тритикале. Водночас обробка насіння обох видів злаків супрово­джувалася посиленням росту пагонів і коренів, підвищенням активності амілази та супероксиддисмутази, зниженням вмісту Н2О2 і МДА, а також підвищеним накопиченням цукрів у пагонах. Зроблено висновок, що підвищення схожості старого насіння злаків під впливом донора H2S зумовлене посиленням мобілізації резервних вуглеводів та модуляцією активності антиоксидантної системи. Таку обробку можна розглядати як ефективний інструмент для покращення росту проростків.

Ключові слова: , , , , , , ,


Посилання:

  1. Li ZG, Min X, Zhou ZH. Hydrogen Sulfide: A Signal Molecule in Plant Cross-Adaptation. Front Plant Sci. 2016;7:1621. PubMed, PubMedCentral, CrossRef
  2. Pandey AK, Gautam A. Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress. Physiol Plant. 2020;168(2):511-525. PubMed, PubMedCentral, CrossRef
  3. Zhang H, Hu SL, Zhang ZJ, Hu LY, Jiang CX, Wei ZJ, Liu J, Wang HL, Jiang ST. Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharv Biol Technol. 2011;60(3):251-257. CrossRef
  4. Zhang H. Hydrogen sulfide in plant biology. In: Lamattina L, Garcia-Mata C. (eds.). Signaling and Communication in Plants. Vol. Gasotransmitters in Plants. The Rise of a New Paradigm in Cell Signaling. Switzerland: Springer, 2016. P. 23-51. CrossRef
  5. Kolupaev YuE, Horielova EI, Yastreb TO, Popov YuV, Ryabchun NI. PPhenylalanine ammonia-lyase activity and content of flavonoid compounds in wheat seedlings at the action of hypothermia and hydrogen sulfide donor. Ukr Biochem J. 2018;90(6):12-20. CrossRef
  6. Sharma P, Meyyazhagan A, Easwaran M, Sharma MMM, Mehta S, Pandey V, Liu W-C, Kamyab H, Balasubramanian B, Baskaran R, Klemeš JJ, Mesbah M, Chelliapan S. Hydrogen Sulfide: A new warrior in assisting seed germination during adverse environmental conditions. Plant Growth Regul. 2022;98:401-420. CrossRef
  7. Zivanovic J, Kouroussis E, Kohl JB, Adhikari B, Bursac B, Schott-Roux S, Petrovic D, Miljkovic JL, Thomas-Lopez D, Jung Y, Miler M, Mitchell S, Milosevic V, Gomes JE, Benhar M, Gonzalez-Zorn B, Ivanovic-Burmazovic I, Torregrossa R, Mitchell JR, Whiteman M, Schwarz G, Snyder SH, Paul BD, Carroll KS, Filipovic MR. Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration. Cell Metab. 2019;30(6):1152-1170.e13. PubMed, PubMedCentral, CrossRef
  8. Bhadwal SS, Verma S, Hassan S, Kaur S. Unraveling the potential of hydrogen sulfide as a signaling molecule for plant development and environmental stress responses: A state-of-the-art review. Plant Physiol Biochem. 2024;212:108730. PubMed, CrossRef
  9. Aroca A, Gotor C, Romero LC. Hydrogen Sulfide Signaling in Plants: Emerging Roles of Protein Persulfidation. Front Plant Sci. 2018;9:1369. PubMed, PubMedCentral, CrossRef
  10. Cuevasanta E, Lange M, Bonanata J, Coitiño EL, Ferrer-Sueta G, Filipovic MR, Alvarez B. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide. J Biol Chem. 2015;290(45):26866-26880. PubMed, PubMedCentral, CrossRef
  11. Khan NM, Siddiqui ZH, Naeem M, Abbas ZK, Ansari MW. Nitric oxide and hydrogen sulfide interactions in plants under adverse environmental conditions. In Aftab T, Naeem M (eds.). Emerging Plant Growth Regulators in Agriculture: Roles in Stress Tolerance. Elsevier Inc., Academic Press, 2022. P. 215-244. CrossRef
  12. Aroca A, Benito JM, Gotor C, Romero LC. Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis. J Exp Bot. 2017;68(17):4915-4927. PubMed, PubMedCentral, CrossRef
  13. Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot. 2021;72(3):830-847. PubMed, CrossRef
  14. Guo Z, Liang Y, Yan J, Yang E, Li K, Xu H. Physiological response and transcription profiling analysis reveals the role of H2S in alleviating excess nitrate stress tolerance in tomato roots. Plant Physiol Biochem. 2018;124:59-69. PubMed, CrossRef
  15. Ye T, Ma T, Chen Y, Liu C, Jiao Z, Wang X, Xue H. The role of redox-active small molecules and oxidative protein post-translational modifications in seed aging. Plant Physiol Biochem. 2024;213:108810. PubMed, CrossRef
  16. Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M. Different Modes of Hydrogen Peroxide Action During Seed Germination. Front Plant Sci. 2016;7:66.
    PubMed, PubMedCentral, CrossRef
  17. Kolupaev YE, Yemets AI, Yastreb TO, Blume YB. The role of nitric oxide and hydrogen sulfide in regulation of redox homeostasis at extreme temperatures in plants. Front Plant Sci. 2023;14:1128439. PubMed, PubMedCentral, CrossRef
  18. Shi H, Ye T, Han N, Bian H, Liu X, Chan Z. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J Integr Plant Biol. 2015;57(7):628-640. PubMed, CrossRef
  19. Kolupaev YuE, Karpets YuV, Shkliarevskyi MA, Yastreb TO, Plohovska SH, Yemets AI, Blume YB. Gasotransmitters in plants: Mechanisms of participation in adaptive responses. Open Agricult J. 2022;16(Suppl-1, M5):e187433152207050. CrossRef
  20. Kranner I, Minibayeva FV, Beckett RP, Seal CE. What is stress? Concepts, definitions and applications in seed science. New Phytol. 2010;188(3):655-673. PubMed, CrossRef
  21. Job C, Rajjou L, Lovigny Y, Belghazi M, Job D. Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol. 2005;138(2):790-802. PubMed, PubMedCentral, CrossRef
  22. Oracz K, El-Maarouf Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 2007;50(3):452-465. PubMed, CrossRef
  23. Zhang K, Zhang Y, Sun J, Meng J, Tao J. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiol Biochem. 2021;158:475-485. PubMed, CrossRef
  24. Ahmed Z, Shah ZH, Rehman HM, Shahzad K, Daur I, Elfeel A, Hassan MU, Elsafori AK, Yang SH, Chung G. Genomics: A Hallmark to Monitor Molecular and Biochemical Processes Leading Toward a Better Perceptive of Seed Aging and ex-situ Conservation. Curr Issues Mol Biol. 2017;22:89-112.
    PubMed, CrossRef
  25. Kepczynski J, Cembrowska‐Lech D, Sznigir P. Interplay between nitric oxide, ethylene, and gibberellic acid regulating the release of Amaranthus retroflexus seed dormancy. Acta Physiol Plant. 2017;39:254. CrossRef
  26. Kosakivska IV, Voytenko LV, Vasyuk VA, Vedenichova NP, Babenko LM, Shcherbatyuk MM. Phytohormonal regulation of seed germination. Fiziol Rast Genet. 2019;51(3):187-206. (In Ukrainian). CrossRef
  27. Kosakivska IV, Vasyuk VA, Voytenko LV, Shcherbatiuk MM. Effect of priming with gibberellic acid on acorn germination and growth of plants of Quercus robur and Q. rubra (Fagaceae). Ukr Bot J. 2022;79(4):254-266. (In Ukrainian). CrossRef
  28. Muhie SH. Seed priming with phytohormones to improve germination under dormant and abiotic stress conditions. Adv Crop Sci Technol. 2018;6(6):403. CrossRef
  29. Ashraf MA, Rasheed R, Hussain I, Iqbal M, Riaz M, Arif MS. Chemical priming for multiple stress tolerance. In: Hasanuzzaman M, Fotopoulos V (eds.). Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore, 2019. P. 385-415. CrossRef
  30. Kosakivska IV, Vedenicheva NP, Babenko LM, Voytenko LV, Romanenko KO, Vasyuk VA. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Mol Biol Rep. 2022;49(1):617-628. PubMed, CrossRef
  31. Kosakivska IV., Babenko LM, Vasyuk VA, Voytenko LV, Shcherbatiuk MM. Natural growth regulators as inducers of resistance in cereal plants against extreme environmental factors. In: Yastreb TO, Kolupaev YE, Yemets AI, Blume YB (eds.). Regulation of Adaptive Responses in Plants. New York: Nova Science Publishers, Inc., 2024. P. 33-81.
  32. Kiriziy D, Kedruk A, Stasik O. Effects of drought, high temperature and their combinations on the photosynthetic apparatus and plant productivity. In: Yastreb TO, Kolupaev YE, Yemets AI, Blume YB (eds.). Regulation of Adaptive Responses in Plants. New York: Nova Science Publishers, Inc., 2024. P. 1-32.
  33. Hilal B, Khan TA, Fariduddin Q. Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. Plant Physiol Biochem. 2023;196:1065-1083. PubMed, CrossRef
  34. Dai J, Wen D, Li H, Yang J, Rao X, Yang Y, Yang J, Yang C, Yu J. Effect of hydrogen sulfide (H2S) on the growth and development of tobacco seedlings in absence of stress. BMC Plant Biol. 2024;24(1):162. PubMed, PubMedCentral, CrossRef
  35. Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol. 2008;50(12):1518-1529. PubMed, CrossRef
  36. Zhou ZH, Wang Y, Ye XY, Li ZG. Signaling Molecule Hydrogen Sulfide Improves Seed Germination and Seedling Growth of Maize (Zea mays L.) Under High Temperature by Inducing Antioxidant System and Osmolyte Biosynthesis. Front Plant Sci. 2018;9:1288. PubMed, PubMedCentral, CrossRef
  37. Zhang H, Dou W, Jiang CX, Wei ZJ, Liu J, Jones RL. Hydrogen sulfide stimulates β-amylase activity during early stages of wheat grain germination. Plant Signal Behav. 2010;5(8):1031-1033. PubMed, PubMedCentral, CrossRef
  38. Baudouin E, Poilevey A, Hewage NI, Cochet F, Puyaubert J, Bailly C. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination. Front Plant Sci. 2016;7:930. PubMed, PubMedCentral, CrossRef
  39.  Dooley FD, Nair SP, Ward PD. Increased growth and germination success in plants following hydrogen sulfide administration. PLoS One. 2013;8(4):e62048. PubMed, PubMedCentral, CrossRef
  40. Kurek K, Plitta-Michalak B, Ratajczak E. Reactive Oxygen Species as Potential Drivers of the Seed Aging Process. Plants (Basel). 2019;8(6):174. PubMed, PubMedCentral, CrossRef
  41. Rajjou L, Lovigny Y, Groot SP, Belghazi M, Job C, Job D. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol. 2008;148(1):620-641. PubMed, PubMedCentral, CrossRef
  42. Afzal I. Seed priming: what’s next? Seed Sci Technol. 2023;51(3):379-405. CrossRef
  43. Xia F, Cheng H, Chen L, Zhu H, Mao P, Wang M. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in oat seeds. BMC Plant Biol. 2020;20(1):104. PubMed, PubMedCentral, CrossRef
  44. Kolupaev YuE, Taraban DA, Kokorev AI, Yastreb TO, Pysarenko VM, Sherstiuk E, Karpets YuV. Effect of melatonin and hydropriming on germination of aged triticale and rye seeds. Botanica. 2024;30(1):1-13. CrossRef
  45. Martinek P, Škorpik M, Chrpova J, Fučík P, Schweiger J. Development of the new winter wheat variety Skorpion with blue grain. Czech J Genet Plant Breeding. 2013;49(2):90-94. CrossRef
  46. Goldstein LD, Jennings PH. The Occurrence and Development of Amylase Enzymes in Incubated, De-embryonated Maize Kernels. Plant Physiol. 1975;55(5):893-898. PubMed, PubMedCentral, CrossRef
  47. Fawzi AFA, El‐Fouly MM. Amylase and invertase activities and carbohydrate contents in relation to physiological sink in carnation. Physiol Plant. 1979;47(4):245-249. CrossRef
  48. Yastreb TO, Kokorev AI, Makaova BE, Ryabchun NI, Sakhno TV, Dmitriev AP, Kolupaev YuE. Response of the antioxidant system of wheat seedlings with different genotypes to exogenous prooxidants: the relationship with resistance to abiotic stressors. Ukr Biochem J. 2023;95(6):81-96. CrossRef
  49. Sagisaka S. The Occurrence of Peroxide in a Perennial Plant, Populus gelrica. Plant Physiol. 1976;57(2):308-309. PubMed, PubMedCentral, CrossRef
  50. Kolupaev YuE, Horielova EI, Yastreb TO, Ryabchun NI. State of antioxidant system in triticale seedlings at cold hardening of varieties of different frost resistance. Cereal Research Commun. 2020;48(2):165-171. CrossRef
  51. Bobo-García G, Davidov-Pardo G, Arroqui C, Vírseda P, Marín-Arroyo MR, Navarro M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J Sci Food Agric. 2015;95(1):204-209. PubMed, CrossRef
  52. Nogués S, Baker NR. Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot. 2000;51(348):1309-1317. PubMed, CrossRef
  53. Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol. 2010;52(6):556-567. PubMed, CrossRef
  54. Zhang H, Hu LY, Li P, Hu KD, Jiang CX, Luo JP. Hydrogen sulfide alleviated chromium toxicity in wheat. Biol Plant. 2010;54(4);743-747. CrossRef
  55. Ziegler P. Cereal beta-amylases. J Cereal Sci. 1999;29(3):195-204. CrossRef
  56. Hu M, Shi Z, Zhang Z, Zhang Y, Li H. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul. 2012;68:177-188. CrossRef
  57. González-Hernández AI, Scalschi L, García-Agustín P, Camañes G. Exogenous Carbon Compounds Modulate Tomato Root Development. Plants (Basel). 2020;9(7):837. PubMed, PubMedCentral, CrossRef
  58. Sami F, Siddiqui H, Alam P, Hayat S. Glucose-induced response on photosynthetic efficiency, ROS homeostasis, and antioxidative defense system in maintaining carbohydrate and ion metabolism in Indian mustard (Brassica juncea L.) under salt-mediated oxidative stress. Protoplasma. 2021;258(3):601-620. PubMed, CrossRef
  59. Fediuk OM, Bilyavska NO, Zolotareva OK. Effects of sucrose on structure and functioning of photosynthetic apparatus of Galanthus nivalis L. leaves exposed to chilling stress. Annal Romanian Soc Cell Biol. 2017;21(3):43-51. CrossRef
  60. Pukacka S, Ratajczak E, Kalemba E. Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage. J Plant Physiol. 2009;166(13):1381-1390. PubMed, CrossRef
  61. Gangola MP, Ramadoss BR. Sugars play a critical role in abiotic stress tolerance in plants. In: Wani SH (ed.). Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants. Elsevier Inc., Academic Press, 2018:17-38. CrossRef
  62. Morelli R, Russo-Volpe S, Bruno N, Lo Scalzo R. Fenton-dependent damage to carbohydrates: free radical scavenging activity of some simple sugars. J Agric Food Chem. 2003;51(25):7418-7425. PubMed, CrossRef
  63. Ende WV, Peshev D. Sugars as antioxidants in plants. In: Tuteja N, Gill S. (eds.). Crop improvement under adverse conditions. Springer, New York, 2013. P. 285-307. CrossRef
  64. Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W. Sugar signalling and antioxidant network connections in plant cells. FEBS J. 2010;277(9):2022-2037. PubMed, CrossRef
  65. Kolupaev YE, Karpets YV, Yastreb TO, Shemet SA, Bhardwaj R. Antioxidant system and plant cross-adaptation against metal excess and other environmental stressors. In: Landi M, Shemet SA, Fedenko VS (eds.). Metal toxicity in higher plants. New York, Nova Science Publishers, Inc., 2020. P. 21-66.
  66. Corpas FJ, Barroso JB, González-Gordo S, Muñoz-Vargas MA, Palma JM. Hydrogen sulfide: A novel component in Arabidopsis peroxisomes which triggers catalase inhibition. J Integr Plant Biol. 2019;61(7):871-883. PubMed, CrossRef
  67. Christou A, Filippou P, Manganaris GA, Fotopoulos V. Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol. 2014;14:42. PubMed, PubMedCentral, CrossRef
  68. da-Silva CJ, Modolo LV. Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity. Acta Bot Bras. 2018;32(01):150-160. CrossRef
  69. Huang D, Jing G, Zhu S. Regulation of Mitochondrial Respiration by Hydrogen Sulfide. Antioxidants (Basel). 2023;12(8):1644. PubMed, PubMedCentral, CrossRef
  70. Liu F, Zhang X, Cai B, Pan D, Fu X, Bi H, Ai X. Physiological response and transcription profiling analysis reveal the role of glutathione in H2S-induced chilling stress tolerance of cucumber seedlings. Plant Sci. 2020;291:110363. PubMed, CrossRef
  71. Corpas FJ, Muñoz-Vargas MA, González-Gordo S, Rodríguez-Ruiz M, Palma JM. Nitric oxide (NO) and hydrogen sulfide (H2S): New potential biotechnological tools for postharvest storage of horticultural crops. J Plant Growth Regul. 2023. CrossRef
  72. Kolupaev YuE, Маkaova BE, Ryabchun NI, Kokorev AI, Sakhno TV, Sakhno Yu, Yastreb TO, Marenych MM. Adaptation of cereal seedlings to oxidative stress induced by hyperthermia. Agricult Forest. 2022;68(4):7-18. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.