Ukr.Biochem.J. 2015; Том 87, № 2, березень-квітень, c. 5-25

doi: http://dx.doi.org/10.15407/ubj87.02.005

Mg(2+),ATP-залежна кальцієва помпа плазматичної мембрани гладеньком’язових клітин. ІІ. Регуляція активності

Т. О. Векліч, Ю. Ю. Мазур, С. О. Костерін

Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
e-mail: veklich@biochem.kiev.ua, yuliya.vorona@gmail.com

Са2+-помпа плазматичної мембрани є одним із ключових протеїнів, які беруть участь у процесах обміну іонів Са в гладеньком’язових клітинах. Її функції є досить різноманітними: від контролю базальної цитоплазматичної концентрації Са2+ – до регуляції протеїнів, що залучені у Са2+-залежні сигнальні каскади, і часто залежать від ізоформи або навіть від форми альтернативного сплайсингу вказаного вище протеїну. Зважаючи на досить різноматні функції та властивості Са2+-помпи плазматичної мембрани, які детально було розглянуто в першій частині нашого огляду (Ukr. Biochem. J., 2015, 87, № 1), важливим, з точки зору функціонування клітини, є прецизійна регуляція її активності. Тому друга частина огляду присвячена саме висвітленню різноматніх факторів регуляції активності Са2+-помпи плазматичної мембрани гладеньком’язових клітин: як ендогенних, так і екзогенних, біотичних та абіотичних чинників. Особлива увага приділяється даним літератури та власним результатам, пов’язаним із розробкою та пошуком селективного інгібітора Са2+-помпи плазматичної мембрани, який дозволив би прискіпливіше вивчати її функціональні особливості в гладеньком’язових клітинах.

Ключові слова: , , , ,


Посилання:

  1. Kosterin SO. Calcium transport in smooth muscles. Science opinion, 1990; 216 p. (In Russian).
  2. Babich LG, Fomin VP, Kosterin SA. Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma. Biokhimiia. 1990 Oct;55(10):1890-901. Russian. PubMed
  3. Thomas RC. The plasma membrane calcium ATPase (PMCA) of neurones is electroneutral and exchanges 2 H+ for each Ca2+ or Ba2+ ion extruded. J Physiol. 2009 Jan 15;587(Pt 2):315-27. Epub 2008 Dec 8. PubMed, PubMedCentral, CrossRef
  4. Liu L, Ishida Y, Okunade G, Pyne-Geithman GJ, Shull GE, Paul RJ. Distinct roles of PMCA isoforms in Ca2+ homeostasis of bladder smooth muscle: evidence from PMCA gene-ablated mice. Am J Physiol Cell Physiol. 2007 Jan;292(1):C423-31. Epub 2006 Sep 6. PubMed, CrossRef
  5. Thomas RG. The Ca2+:H+ coupling ratio of the plasma membrane calcium ATPase in neurones is little sensitive to changes in external or internal pH. Cell Calcium. 2011 Jun;49(6):357-364. CrossRef
  6. Floyd R, Wray S. Calcium transporters and signalling in smooth muscles. Cell Calcium. 2007 Oct-Nov;42(4-5):467-76. Epub 2007 Jul 10. Review. PubMed, CrossRef
  7. Dubyts’kyĭ LO, Vovkanych LS. [Interaction of metal cations with Ca2+-transport sites of the plasma membrane Ca2+ pump of secretory cells of gastric glands]. Ukr Biokhim Zhurn. (1999). 2003 Mar-Apr;75(2):39-46. Ukrainian. PubMed
  8. Pande J, Grover AK. Plasma membrane calcium pumps in smooth muscle: from fictional molecules to novel inhibitors. Can J Physiol Pharmacol. 2005 Aug-Sep;83(8-9):743-54. Review. PubMed, CrossRef
  9. Gomez-Pinilla PJ, Pozo MJ, Baba A, Matsuda T, Camello PJ. Ca2+ extrusion in aged smooth muscle cells. Biochem Pharmacol. 2007 Sep 15;74(6):860-9. Epub 2007 Jun 29. PubMed
  10.  Carafoli E., Fedrizzi L., Domi T., Di Leva F., Brini M. Chapter 132 – Calcium Pumps. Handbook of Cell Signaling (Second Edition), Ralph A. Bradshaw and Edward A. Dennis, San Diego. 2010. P. 57-61.
  11. Joshi NB, Shamoo AE. Binding of Eu3+ to cardiac sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase-laser excited Eu3+ spectroscopic studies. Biophys J. 1987 Feb;51(2):185-91. PubMed, PubMedCentral, CrossRef
  12. Gangola P, Shamoo AE. Characterization of (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum by laser-excited europium luminescence. Eur J Biochem. 1987 Jan 15;162(2):357-63. PubMed, CrossRef
  13. Visser GJ, Peters PHJ, Theuvenet APR. Cadmium ion is a non-competitive inhibitor of red cell Ca(2+)-ATPase activity. Biochim Biophys Acta. 1993 Oct 10;1152(1):26-34. PubMed, CrossRef
  14. Verbost PM, Flik G, Pang PK, Lock RA, Wendelaar Bonga SE. Cadmium inhibition of the erythrocyte Ca2+ pump. A molecular interpretation. J Biol Chem. 1989 Apr 5;264(10):5613-5. PubMed
  15. Toledo-Maciel A, Goncalves-Gomes S, de Gouveia Castex M, Vieyra A. Progressive inactivation of plasma membrane (Ca2+,Mg2+)ATPase by Cd2+ in the absence of ATP and reversible inhibition during catalysis. Biochemistry. 1998 Nov;37(44):15261-5.  PubMed, CrossRef
  16. Pestov N. B., Dmitriev R. I., Shahparonov M. I. Plasma membrane Ca2+-ATPase regulation.Uspekhi Biologicheskoi Khimii. 2003;43:99-138. (In Russian).
  17. Monteith GR, Wanigasekara Y, Roufogalis BD. The plasma membrane calcium pump, its role and regulation: new complexities and possibilities. J Pharmacol Toxicol Methods. 1998 Nov;40(4):183-90. Review. PubMed
  18. Gutiérrez-Martín Y, Martín-Romero FJ, Henao F, Gutiérrez-Merino C. Synaptosomal plasma membrane Ca(2+) pump activity inhibition by repetitive micromolar ONOO(-) pulses. Free Radic Biol Med. 2002 Jan 1;32(1):46-55. PubMed
  19. Selvam R, Ganesan K, Narayana Raju KV, Gangadharan AC, Manohar BM, Puvanakrishnan R. Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity. Life Sci. 2007 Jun 6;80(26):2403-10. Epub 2007 May 1. PubMed
  20. Mandai M, Das S, Chakraborti T, Chakraborti S. Matrix metalloprotease 2-mediated activation of Ca(2+)-ATPase by superoxide radical (O2*-) in plasma membrane of bovine pulmonary vascular smooth muscle. Indian J Biochem Biophys. 2002 Dec;39(6):390-6. PubMed
  21. Kosterin SO. The kinetic and energetic aspects of the effect of incubation medium dielectric permeability on the catalytic and transporting activity of the Mg2+,АТР-dependent Ca2+ pump plasma membranes. Ukr Biokhim Zhurn. 2000 Jul-Oct;72(4-5):44-60. (In Ukrainian). PubMed
  22. Sepúlveda MR, Mata AM. The interaction of ethanol with reconstituted synaptosomal plasma membrane Ca2+-ATPase. Biochim Biophys Acta. 2004 Oct 11;1665(1-2):75-80. PubMed, CrossRef
  23. Babich LG, Shlykov SG, Borisova LA, Slinchenko NM, Bratkova NF, Kosterin SO.  Effect of ethanol on ativity of energy-dependent   Са2+-transporting systems of myometrium cell. Ukr Biokhim Zhurn. 2000 Jan-Feb;72(1):32-41. (In Russian). PubMed
  24. Di Leva F, Domi T, Fedrizzi L, Lim D, Carafoli E. The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys. 2008 Aug 1;476(1):65-74. Epub 2008 Mar 4. Review. PubMed, CrossRef
  25. Slinchenko NM, Chernysh IG, Kosterin SO. Utilization of purified myometrium cell plasma membrane Са2+,Мg2+-АТРase for comparative estimation of efficacy of energy-dependent  Ca2+-transport inhibitors. Ukr Biokhim Zhurn. 2003 Mar-Apr;75(2):33-38. (In Ukrainian). PubMed
  26. Carafoli E. The Ca2+ pump of the plasma membrane. J Biol Chem. 1992 Feb 5;267(4):2115-8. Review. PubMed
  27. Wang T, Tsai LI, Solaro RJ, Grassi de Gende AO, Schwartz A. Effects of potassium on vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase from dog cardiac and rabbit skeletal muscle. Biochem Biophys Res Commun. 1979 Nov;91(1):356-361. PubMed, CrossRef
  28. Barrabin H, Garrahan PJ, Rega AF. Vanadate inhibition of the Ca2+-ATPase from human red cell membranes. Biochim Biophys Acta. 1980 Aug 14;600(3):796-804. PubMed, CrossRef
  29. Fedirko NV, Manko VV, Klevets MYu. Effect of p-chloromercuribenzoic acid and dithiothreitol on the Ca(2+) content of salivary glands and their protein secretion.  Fiziol Zhurn. 2001;47(3):35-41. (In Ukrainian). PubMed
  30. Pande J., Mallhi K. K., Grover A. K. A novel plasma membrane Ca2+-pump inhibitior: caloxin 1A1. Eur. J. Pharmacol. 2005;508(1-3):1-6. PubMed
  31. Chaudhary J, Walia M, Matharu J, Escher E, Grover AK. Caloxin: a novel plasma membrane Ca2+ pump inhibitor. Am J Physiol Cell Physiol. 2001 Apr;280(4):C1027-30. PubMed
  32. Holmes ME, Chaudhary J, Grover AK. Mechanism of action of the novel plasma membrane Ca(2+)-pump inhibitor caloxin. Cell Calcium. 2003 Apr;33(4):241-5. PubMed, CrossRef
  33. Veklich TO, Shkrabak AA, Mazur YuYu, Rodik RV, Boyko VI, Kalchenko VI, Kosterin SO. Kinetic regularities of calixarene C-90 action on the myometrial plasma membrane Ca2+,Mg2+-ATPase activity and on Ca2+ concentration in unexcited cells of the myometrium. Ukr Biokhim Zhurn. 2013;85(4):20-29. (In Ukrainian). PubMed
  34. Veklich TA, Shkrabak AA, Slinchenko NN, Mazur II, Rodik RV, Boyko VI, Kalchenko VI, Kosterin SA. Calix[4]arene C-90 selectively inhibits Ca2+,Mg2+-ATPase of myometrium cell plasma membrane. Biochemistry (Mosc). 2014 May;79(5):417-24. PubMed, CrossRef
  35. Ortega C., Ortolano S., Carafoli E. The plasma membrane calcium pump. In: Calcium: a matter of life or death. Edited by Krebs J., Michalak M. New York: Springer, 2007;41:179-197.
  36. Gatto C, Milanick MA. Inhibition of the red blood cell calcium pump by eosin and other fluorescein analogues. Am J Physiol. 1993 Jun;264(6 Pt 1):C1577-86. PubMed
  37. Gatto C, Hale CC, Xu W, Milanick MA. Eosin, a potent inhibitor of the plasma membrane Ca pump, does not inhibit the cardiac Na-Ca exchanger. Biochemistry. 1995 Jan 24;34(3):965-72. PubMed, CrossRef
  38. Slinchenko NN, Bratkova NF, Kosterin SA, Zimina VP, Chernysh IG. Effects of eosin Y on the catalytic and functional activities of Mg2+,ATP-dependent calcium pump of smooth muscle cell plasma membrane. Biochemistry (Mosc). 1998 Jun;63(6):685-90. PubMed
  39. Introduction to biomembranology. Edited by A. A. Boldyreva.  М.: Published by MSU. 1990;  280 p.
  40. Berridge MJ. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345-60. Review. PubMed, PubMedCentral
  41. Cortijo J, Villagrasa V, Martí-Cabrera M, Villar V, Moreau J, Advenier C, Morcillo EJ, Small RC. The spasmogenic effects of vanadate in human isolated bronchus. Br J Pharmacol. 1997 Aug;121(7):1339-49. PubMed, PubMedCentral, CrossRef
  42. Kosterin SO, Bratkova NF, Babich LG, Shinlova OP, Slinchenko NM, Shlykov SG, Zimina VP, Rovenets NA, Veklich ТO. Effect of inhibitors of energy-dependent Са2+-transporting systems on calcium pumps of a smooth-muscle cell. Ukr Biokhim Zhurn. 1996 Nov-Dec;68(6):50-61. (In Ukrainian). PubMed
  43. Szewczyk MM, Pande J, Akolkar G, Grover AK. Caloxin 1b3: a novel plasma membrane Ca(2+)-pump isoform 1 selective inhibitor that increases cytosolic Ca(2+) in endothelial cells. Cell Calcium. 2010 Dec;48(6):352-7. Epub 2010 Nov 18. PubMed, CrossRef
  44. Yatime L, Buch-Pedersen MJ, Musgaard M, Morth JP, Lund Winther AM, Pedersen BP, Olesen C, Andersen JP, Vilsen B, Schiott B, Palmgren MG, Moller JV, Nissen P, Fedosova N. P-type ATPases as drug targets: tools for medicine and science. Biochim Biophys Acta. 2009 Apr;1787(4):207-220. PubMed, CrossRef
  45. Pande J, Mallhi KK, Grover AK. Role of third extracellular domain of plasma membrane Ca2+-Mg2+-ATPase based on the novel inhibitor caloxin 3A1. Cell Calcium. 2005 Mar;37(3):245-50. PubMed, CrossRef
  46. Chen HH, Lin YR, Peng QG, Chan MH. Effects of trichloroethylene and perchloroethylene on muscle contractile responses and epithelial prostaglandin release and acetylcholinesterase activity in swine trachea. Toxicol Sci. 2005 Jan;83(1):149-54. Epub 2004 Oct 20. PubMed, CrossRef
  47. Rodik RV. Application of calixarenes for DNA transfection in cells. Ukr Biokhim Zhurn. 2012 Sep-Oct;84(5):5-15. Review. Ukrainian. PubMed
  48. Brini M, Carafoli E. Calcium pumps in health and disease. Physiol Rev. 2009 Oct;89(4):1341-78. Review. PubMed, CrossRef
  49. Usachev YM, DeMarco SJ, Campbell C, Strehler EE, Thayer SA. Bradykinin and ATP accelerate Ca(2+) efflux from rat sensory neurons via protein kinase C and the plasma membrane Ca(2+) pump isoform 4. Neuron. 2002 Jan 3;33(1):113-22. PubMed, CrossRef
  50. Kalchenko VI, Rodik RV, Boyko VI. Calixarenes with bio-medical potential. J Org Pharm Chem. 2005;3(4):13-29. (In Ukrainian).
  51. Coleman AW, Jebors S, Cecillon S, Perret P, Garin D, Marti-Battle D, Moulin M. Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New J Chem. 2008;32(5):780-782. CrossRef
  52. Lalor R, Baillie-Johnson H, Redshaw C, Matthews SE, Mueller A. Cellular uptake of a fluorescent calix[4]arene derivative. J Am Chem Soc. 2008 Mar 12;130(10):2892-3. PubMed, CrossRef
  53. Paclet M-H, Rousseau CF, Yannick C, Morel F, Coleman AW. An absence of non-specific immune response towards para-sulphonatocalix[n]arenes. J Inclus Phenom Macrocycl Chem. 2006 Jun;55(3-4):353-357. CrossRef
  54. Veklich TO, Shkrabak AA, Cherenok SO, Kalchenko VI, Kosterin SO. Comparative investigation of effects of calix[4]arene C-99 and its analogs on Nа+,K+-ATPase activity of uterus myocite plasma membrane. Ukr Biokhim Zhurn. 2012 Nov-Dec;84(6):49-57. (In Ukrainian). PubMed
  55. Komisarenko SV, Kosterin SO, Lugovskoy EV, Kalchenko VI. Calixarene methylene bisphosphonic acids as promising effectors of biochemical processes. Ukr Biokhim Zhurn. 2013;85(6):106-128. (In Ukrainian).
  56. Veklich TO, Shkrabak AA, Rodik RV,  Kalchenko VI, Kosterin SO. The calixarene C-107 increase the affinity of the Na+,K+-АТРase activity in plasmatic membrane of smooth muscle cells to the ouabain. Ukr Biokhim Zhurn. 2011;83(1):38-44. (In Ukrainian). PubMed
  57. Veklich T., Shkrabak A., Mazur I. I. Plasma membrane Ca2+,Mg2+-ATPase activity is selectively suppressed by calix[4]arene C-90. Visnyk of L’viv University. 2014;68:337-347. (In Ukrainian).
  58. Veklich T. O., Shkrabak A. A., Mazur I. I. The effect of calixarene C-90 on Ca2+,Mg2+-ATPase activity of smooth muscle cell plasma membrane. Abstracts of the Scientific-practical conference “Biologically active substances: basic and applied questions of production and application.” Novuy Svit, Crimea, Ukraine.  2013;2:325-326.
  59. Caroni P, Zurini M, Clark A, Carafoli E. Further characterization and reconstitution of the purified Ca2+-pumping ATPase of heart sarcolemma. J Biol Chem. 1983 Jun 25;258(12):7305-10. PubMed
  60. Furukawa K, Nakamura H. Characterization of the (Ca2+-Mg2+)ATPase purified by calmodulin-affinity chromatography from bovine aortic smooth muscle. J Biochem. 1984 Nov;96(5):1343-50. PubMed
  61. Enyedi A, Minami J, Caride AJ, Penniston JT. Characteristics of the Ca2+ pump and Ca2+-ATPase in the plasma membrane of rat myometrium. Biochem J. 1988 May 15;252(1):215-20. PubMed, PubMedCentral
  62. Falchetto R, Vorherr T, Brunner J, Carafoli E. The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem. 1991 Feb 15;266(5):2930-6. PubMed
  63. Strehler EE, Zacharias DA. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev. 2001 Jan;81(1):21-50. Review. PubMed
  64. Denning EJ, Beckstein O. Influence of lipids on protein-mediated transmembrane transport. Chem Phys Lipids. 2013 Apr;169:57-71. Epub 2013 Mar 6. Review. PubMed, CrossRef
  65. Enyedi A, Flura M, Sarkadi B, Gardos G, Carafoli E. The maximal velocity and the calcium affinity of the red cell calcium pump may be regulated independently. J Biol Chem. 1987 May 5;262(13):6425-30. PubMed
  66. Monteith GR, Roufogalis BD. The plasma membrane calcium pump–a physiological perspective on its regulation. Cell Calcium. 1995 Dec;18(6):459-70. Review. PubMed
  67. Felix CF, Oliveira VH, Moreira OC, Mignaco JA, Barrabin H, Scofano HM. Inhibition of plasma membrane Ca2+-ATPase by heparin is modulated by potassium. Int J Biochem Cell Biol. 2007;39(3):586-96. Epub 2006 Oct 21. PubMed
  68. Pang Y, Zhu H, Wu P, Chen J. The characterization of plasma membrane Ca2+-ATPase in rich sphingomyelin-cholesterol domains. FEBS Lett. 2005 Apr 25;579(11):2397-403. PubMed
  69. Tang D, Dean WL, Borchman D, Paterson CA. The influence of membrane lipid structure on plasma membrane Ca2+ -ATPase activity. Cell Calcium. 2006 Mar;39(3):209-16. PubMed
  70. Oliveira VH, Nascimento KSO, Freire MM, Moreira OC, Scofano HM, Barrabin H, Mignaco JA. Mechanism of modulation of the plasma membrane Ca2+-ATPase by arachidonic acid. Prostagland. Other Lipid Mediators. 2008;87:47-53.  CrossRef
  71. Davies SS, Guo L. Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids. Chem Phys Lipids. 2014 Jul;181:1-33. Review. PubMed, PubMedCentral , CrossRef
  72. Gulaya NM, Govseeva NN, Klimashe­vsky VM, Shinlova OP, Slinchenko NM, Margitich VM, Kosterin SA. Effect of N-palmitoylethanolamine on energy-dependent transport of Ca2+ in vesicules of myometrium salcolemma and their phospholipid composition. Ukr Biokhim Zhurn. 1997 Sep-Dec;69(5-6):64-74. (In Ukrainian). PubMed
  73. Furukawa K, Tawada Y, Shigekawa M. Protein kinase C activation stimulates plasma membrane Ca2+ pump in cultured vascular smooth muscle cells. J Biol Chem. 1989 Mar 25;264(9):4844-9. PubMed
  74. Fukuda T, Ogurusu T, Furukawa K, Shigekawa M. Protein kinase C-dependent phosphorylation of sarcolemmal Ca2(+)-ATPase isolated from bovine aortic smooth muscle. J Biochem. 1990 Oct;108(4):629-34. PubMed
  75. Kuo TH, Wang KK, Carlock L, Diglio C, Tsang W. Phorbol ester induces both gene expression and phosphorylation of the plasma membrane Ca2+ pump. J Biol Chem. 1991 Feb 5;266(4):2520-5. PubMed
  76. Qu Y, Torchia J, Sen AK. Protein kinase C mediated activation and phosphorylation of Ca(2+)-pump in cardiac sarcolemma. Can J Physiol Pharmacol. 1992 Sep;70(9):1230-5. PubMed
  77. Wright LC, Chen S, Roufogalis BD. Regulation of the activity and phosphorylation of the plasma membrane Ca(2+)-ATPase by protein kinase C in intact human erythrocytes. Arch Biochem Biophys. 1993 Oct;306(1):277-84. PubMed
  78. Krebs J, Guerini D. The calcium pump of plasma membranes Biomembranes. A Multi-Volume Treatise. 1996;5:101-131. CrossRef
  79. Lyubakovska LA, Slinchenko NM, Burchynska NF, Kurskij MD. Catalytic properties of purified Ca2+,Mg2+-ATPase from the myometrium sarcolemma. Biokhimiia. 1990 Jul;55(7):1237-43. PubMed
  80. Popescu LM, Foril CP, Hinescu M, Pănoiu C, Cinteză M, Gherasim L. Nitroglycerin stimulates the sarcolemmal Ca++-extrusion ATPase of coronary smooth muscle cells. Biochem Pharmacol. 1985 May 15;34(10):1857-60. PubMed
  81. Karbovska L, Gorenko Z, Lysai I, Baban V, Veselsky S. The influence of oxytocin on the bile formation and chemical composition of the bile in rats. Physics alive. 2010;18(2):70-74. (In Ukrainian).
  82. Stepankovskaya GK, Shinlova OP, Fomin VP, Kosterin SA, Yarotsky NE. The effect of oxytocin and sigetin on Ca2+ transport in the fraction of plasma membranes of myometrial cells. Ukr Biokhim  Zhurn. 1989 Sep-Oct;61(5):109-112. (In Ukrainian). PubMed
  83. Shinlova OP, Fomin VP, Kosterin SA. Effect of oxytocin on the calcium pump in myometrium sarcolemma. Ukr Biokhim Zhurn. 1987 Mar-Apr;59(2):75-9. (In Ukrainian).  PubMed
  84. Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca(2+) signalling: A tale of ion channels, pumps and transporters. World J Biol Chem. 2012 Jul 26;3(7):127-58. PubMed, PubMedCentral, CrossRef
  85. Guerini D, Pan B, Carafoli E. Expression, purification, and characterization of isoform 1 of the plasma membrane Ca2+ pump: focus on calpain sensitivity. J Biol Chem. 2003 Oct 3;278(40):38141-8. Epub 2003 Jul 8. PubMed
  86. Pászty K, Verma AK, Padányi R, Filoteo AG, Penniston JT, Enyedi A. Plasma membrane Ca2+ATPase isoform 4b is cleaved and activated by caspase-3 during the early phase of apoptosis. J Biol Chem. 2002 Mar 1;277(9):6822-9. Epub 2001 Dec 20. PubMed
  87. Linde CI, Di Leva F, Domi T, Tosatto SC, Brini M, Carafoli E. Inhibitory interaction of the 14-3-3 proteins with ubiquitous (PMCA1) and tissue-specific (PMCA3) isoforms of the plasma membrane Ca2+ pump. Cell Calcium. 2008 Jun;43(6):550-61. Epub 2007 Oct 29. PubMed
  88. Dick IM, Liu J, Glendenning P, Prince RL. Estrogen and androgen regulation of plasma membrane calcium pump activity in immortalized distal tubule kidney cells. Mol Cell Endocrinol. 2003 Dec 30;212(1-2):11-8. PubMed
  89. Vanagas L, Rossi RC, Caride AJ, Filoteo AG, Strehler EE, Rossi JP. Plasma membrane calcium pump activity is affected by the membrane protein concentration: evidence for the involvement of the actin cytoskeleton. Biochim Biophys Acta. 2007 Jun;1768(6):1641-9. PubMed, PubMedCentral
  90. Monesterolo NE, Amaiden MR, Campe­telli AN, Santander VS, Arce CA, Pié J, Casale CH. Regulation of plasma membrane Ca2+-ATPase activity by acetylated tubulin: influence of the lipid environment. Biochim. Biophys. Acta. 2012;1818(3):601-608. CrossRef
  91. Lock JT, Sinkins WG, Schilling WP. Effect of protein S-glutathionylation on Ca2+ homeostasis in cultured aortic endothelial cells. Am J Physiol Heart Circ Physiol. 2011 Feb;300(2):H493-506. PubMed, PubMedCentral, CrossRef
  92. Ritchie MF, Zhou Y, Soboloff J. Transcriptional mechanisms regulating Ca(2+) homeostasis. Cell Calcium. 2011 May;49(5):314-21. Review. PubMed, PubMedCentral, CrossRef
  93. Strehler EE. Plasma membrane calcium ATPases as novel candidates for therapeutic agent development. J Pharm Pharm Sci. 2013;16(2):190-206. Review. PubMed, PubMedCentral
  94. Gros R, Afroze T, You XM, Kabir G, Van Wert R, Kalair W, Hoque AE, Mungrue IN, Husain M. Plasma membrane calcium ATPase overexpression in arterial smooth muscle increases vasomotor responsiveness and blood pressure. Circ Res. 2003 Oct 3;93(7):614-21. PubMed, CrossRef
  95. Cartwright EJ, Oceandy D, Austin C, Neyses L. Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps. Sci China Life Sci. 2011 Aug;54(8):691-8. Review. PubMed, CrossRef
  96. Noble D, Herchuelz A. Role of Na/Ca exchange and the plasma membrane Ca2+-ATPase in cell function. Conference on Na/Ca exchange. EMBO Rep. 2007 Mar;8(3):228-32. PubMed, PubMedCentral, CrossRef
  97. Shlykov SG, Slinchenko NM, Burdyga FV, Kosterin SA. Uterotonic action of sigetin and its effect on the Mg2+, ATP-dependent transport and stationary exchange of Ca2+ through myometrial sarcolemma. Ukr Biokhim Zhurn. 1993 May-Jun;65(3):57-65. Ukrainian.  PubMed
  98. Zvarych EI. Plasma membrane calcium ATPase. Structure and function. Biol. Membrane. 1991;8(6):565-584. (In Russian).

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.