Ukr.Biochem.J. 2015; Том 87, № 3, травень-червень, c. 75-90

doi: http://dx.doi.org/10.15407/ubj87.03.075

Участь вітаміну D(3) у регулюванні окисного метаболізму печінки мишей за цукрового діабету

Д. О. Лабудзинський, О. В. Зайцева, Н. В. Латишко, О. О. Гудкова, М. М. Великий

Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
e-mail: konsument3@gmail.com

Робота присвячена вивченню особливостей окисного метаболізму гепатоцитів мишей за цукрового діабету та дії вітаміну D3. Встановлено, що хронічна гіперглікемія за цукрового діабету зумовлює зниження у 2,5 раза вмісту 25ОНD3 у сироватці крові та компенсаторне зростання вітамін D3 25-гідроксилазної активності гепатоцитів. Розвиток вітамін D3 дефіцитного стану­ супроводжується інтенсифікацією продукції активних форм кисню (АФК) та монооксиду азоту (NO), окисної модифікації протеїнів (за вмістом карбонільних груп та 3-нітротирозину), накопиченням дієнових кон’югатів та ТБК-активних продуктів пероксидації ліпідів і зниженням рівня вільних SH-груп низькомолекулярних сполук у печінці. Показано зниження активності ключових ензимів системи антиоксидантного захисту (каталази, СОД), водночас як активність прооксидантних ензимів NAD(P)H:хінон-оксидоредуктази, ксантиноксидази і NAD(P)H оксидази зростала. Виявлені порушення окисного метаболізму обумовили посилення процесу некротичної загибелі гепатоцитів, тестованої за здатностю їхніх ядер до накопичення пропідію йодиду. Тривале введення (протягом 2 місяців) вітаміну D3 у дозі 20 МО тваринам із цукровим діабетом супроводжується зниженням рівня утворення АФК та окисного ушкодження біомолекул, нормалізує стан системи антиоксидантного захисту в печінці та підвищує виживання гепатоцитів. Результати роботи свідчать про залучення вітаміну D3  у регулюванні окисного метаболізму за цукрового діабету.

Ключові слова: , , , ,


Посилання:

  1. Salsali A, Nathan M. A review of types 1 and 2 diabetes mellitus and their treatment with insulin. Am J Ther. 2006 Jul-Aug;13(4):349-61. Review. PubMed, CrossRef
  2. Jakus V, Rietbrock N. Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res. 2004;53(2):131-42. Review. PubMed
  3. Pazdro R, Burgess JR. The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev. 2010 Apr;131(4):276-86. Review. PubMed, CrossRef
  4. Shymanskyy I., Kuchmerovska T., Donchenko H., Veliky M., Klymenko A., Palyvoda O., Kuchmerovskyi M. Oxidative stress correction by nicotinamide and nicotynol-GABA in diabetic neuropathy. Ukr Biokhim Zhurn. 2002;74(5):89-95. PubMed
  5. Desco MC, Asensi M, Márquez R, Martínez-Valls J, Vento M, Pallardó FV, Sastre J, Vina J. Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol. Diabetes. 2002 Apr;51(4):1118-24. PubMed, CrossRef
  6. Obrosova IG, Drel VR, Pacher P, Ilnytska O, Wang ZQ, Stevens MJ, Yorek MA. Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes. 2005 Dec;54(12):3435-41. PubMed, PubMedCentral, CrossRef
  7. Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 2006 Jul;7(7):517-28. Review. PubMed, CrossRef
  8. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010 Oct 29;107(9):1058-70. Review. PubMed, PubMedCentral, CrossRef
  9. Bouillon R, Lieben L, Mathieu C, Verstuyf A, Carmeliet G. Vitamin D action: lessons from VDR and Cyp27b1 null mice. Pediatr Endocrinol Rev. 2013 Jun;10 Suppl 2:354-66. Review. PubMed
  10. Wolden-Kirk H, Gysemans C, Verstuyf A, Mathieu C. Extraskeletal effects of vitamin D. Endocrinol Metab Clin North Am. 2012 Sep;41(3):571-94. Review.  PubMed, CrossRef
  11. Wiseman H. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 1993 Jul 12;326(1-3):285-8. PubMed, CrossRef
  12. Lapach SN, Chubenko AV, Babich PN. Statistical methods in biomedical studies using Excel. K.: Morion. 2000; p.320 (In Russian).
  13. Seglen Per O. Chapter 4 Preparation of isolated rat liver cells.  In: Methods in Cell Biology. Ed. D.M. Prescott. 1976;13:29-83. CrossRef
  14. Das J, Ghosh J, Manna P, Sil PC. Taurine provides antioxidant defense against NaF-induced cytotoxicity in murine hepatocytes. Pathophysiology. 2008 Oct;15(3):181-90.  PubMed, CrossRef
  15. Gracia-Sancho J, Laviña B, Rodríguez-Vilarrupla A, García-Calderó H, Fernández M, Bosch J, García-Pagán JC. Increased oxidative stress in cirrhotic rat livers: A potential mechanism contributing to reduced nitric oxide bioavailability. Hepatology. 2008 Apr;47(4):1248-56. PubMed, CrossRef
  16. Ning B., Bai M., Shen W. Reduced glutathione protects human hepatocytes from palmitate-mediated injury by suppressing endoplasmic reticulum stress response. Hepatogastroenterology. 2011;58(110-111):1670-9. CrossRef
  17. Zaitseva O. V., Shandrenko S. G. Modification of spectrophotometric method of determination of protein carbonyl groups. Ukr Biokhim Zhurn. 2012;84(5):112-6. (In Ukrainian). PubMed
  18. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515-40. Review. PubMed, CrossRef
  19. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976 Jul;74(1):214-26. PubMed, CrossRef
  20. Eriksson UJ, Borg LAH. Protection by free oxygen radical scavenging enzymes against glucose-induced embryonic malformations in vitro. Diabetologia. 1991 May;34(5):325-31. PubMed, CrossRef
  21. Beers RF Jr, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133-40. PubMed
  22. Moin VM. A simple and specific method for determining glutathione peroxidase activity in erythrocytes. Lab Delo. 1986;(12):724-7. Russian. PubMed
  23. Petrova GV, Donchenko GV. Cytotoxicity of troglitazone, a structural analogue of α-tocopherol is mediated by inhibition of NAD(P)H:Quinone oxidoreductase. Ukr Biokhim Zhurn. 2009;81(4):105-111. (In Russian). PubMed
  24. Heinz F, Reckel S, Kalden JR. A new spectrophotometric assay for enzymes of purine metabolism. I. Determination of xanthine oxidase activity. Enzyme. 1979;24(4):239-46.  PubMed
  25. Murillo MM, Carmona-Cuenca I, Del Castillo G, Ortiz C, Roncero C, Sánchez A, Fernández M, Fabregat I. Activation of NADPH oxidase by transforming growth factor-beta in hepatocytes mediates up-regulation of epidermal growth factor receptor ligands through a nuclear factor-kappaB-dependent mechanism. Biochem J. 2007 Jul 15;405(2):251-9. PubMed, PubMedCentral, CrossRef
  26. Labudzynskyi DO, Shymanskyy IO, Riasnyi VM, Veliky MM. Vitamin D3 availability and functional activity of peripheral blood phagocytes in experimental type 1 diabetes. Ukr Biochem J. 2014 Mar-Apr;86(2):107-18. PubMed, CrossRef
  27. Harper DR, Murphy G. Nonuniform variation in band pattern with luminol/horseradish peroxidase Western blotting. Anal Biochem. 1991 Jan;192(1):59-63.
    PubMed, CrossRef
  28. Pramyothin P, Holick MF. Vitamin D supplementation: guidelines and evidence for subclinical deficiency. Curr Opin Gastroenterol. 2012 Mar;28(2):139-50. Review. PubMed, CrossRef
  29. Rehman A, Nourooz-Zadeh J, Möller W, Tritschler H, Pereira P, Halliwell B. Increased oxidative damage to all DNA bases in patients with type II diabetes mellitus. FEBS Lett. 1999 Apr 1;448(1):120-2. PubMed, CrossRef
  30. Wolff SP. Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull. 1993 Jul;49(3):642-52. Review. PubMed
  31. Rajwani A, Ezzat V, Smith J, Yuldasheva NY, Duncan ER, Gage M, Cubbon RM, Kahn MB, Imrie H, Abbas A, Viswambharan H, Aziz A, Sukumar P, Vidal-Puig A, Sethi JK, Xuan S, Shah AM, Grant PJ, Porter KE, Kearney MT, Wheatcroft SB. Increasing circulating IGFBP1 levels improves insulin sensitivity, promotes nitric oxide production, lowers blood pressure, and protects against atherosclerosis. Diabetes. 2012 Apr;61(4):915-24. PubMed, PubMedCentralCrossRef
  32. Kahn NN, Acharya K, Bhattacharya S, Acharya R, Mazumder S, Bauman WA, Sinha AK. Nitric oxide: the “second messenger” of insulin. IUBMB Life. 2000 May;49(5):441-50. PubMed, CrossRef
  33. Varvarovská J, Racek J, Stetina R, Sýkora J, Pomahacová R, Rusavý Z, Lacigová S, Trefil L, Siala K, Stozický F. Aspects of oxidative stress in children with type 1 diabetes mellitus. Biomed Pharmacother. 2004 Dec;58(10):539-45. PubMed, CrossRef
  34. Gubskiy UI, Belenichev IF, Pavlov SV. Toxicological effects of oxidative modification of proteins in various pathological conditions (review). Sovr Probl Toks. 2005;3:20-26. (In Russian).
  35. Tang VM, Young AH, Tan H, Beasley C, Wang JF. Glucocorticoids increase protein carbonylation and mitochondrial dysfunction. Horm Metab Res. 2013 Sep;45(10):709-15. Epub 2013 May 13. PubMed, CrossRef
  36. Drel VR, Pacher P, Vareniuk I, Pavlov I, Ilnytska O, Lyzogubov VV, Tibrewala J, Groves JT, Obrosova IG. A peroxynitrite decomposition catalyst counteracts sensory neuropathy in streptozotocin-diabetic mice. Eur J Pharmacol. 2007 Aug 13;569(1-2):48-58. PubMed, PubMed, CrossRef
  37. Ingaramo PI, Ronco MT, Francés DE, Monti JA, Pisani GB, Ceballos MP, Galleano M, Carrillo MC, Carnovale CE. Tumor necrosis factor alpha pathways develops liver apoptosis in type 1 diabetes mellitus. Mol Immunol. 2011 Jul;48(12-13):1397-407. PubMed, CrossRef
  38. Gérard-Monnier D, Chaudiere J. Metabolism and antioxidant function of glutathione. Pathol Biol (Paris). 1996 Jan;44(1):77-85. Review. French. PubMed
  39. Fiorentino TV, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des. 2013;19(32):5695-703. Review. PubMed, CrossRef
  40. Yim MB, Chock PB, Stadtman ER. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Proc Natl Acad Sci USA. 1990 Jul;87(13):5006-10. PubMed, PubMedCentral, CrossRef
  41. Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A. S-glutathionylation in protein redox regulation. Free Radic Biol Med. 2007 Sep 15;43(6):883-98. Review. PubMed, CrossRef
  42. Murphy MP. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal. 2012 Mar 15;16(6):476-95. Review. PubMed, CrossRef
  43. Domínguez L, Sosa-Peinado A, Hansberg W. Catalase evolved to concentrate H2O2 at its active site. Arch Biochem Biophys. 2010 Aug 1;500(1):82-91.  PubMed, CrossRef
  44. Thomas JP, Maiorino M, Ursini F, Girotti AW. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J Biol Chem. 1990 Jan 5;265(1):454-61. PubMed
  45. Lind C, Cadenas E, Hochstein P, Ernster L. DT-diaphorase: purification, properties, and function. Methods Enzymol. 1990;186:287-301. PubMed, CrossRef
  46. Cheng Q, Aleksunes LM, Manautou JE, Cherrington NJ, Scheffer GL, Yamasaki H, Slitt AL. Drug-metabolizing enzyme and transporter expression in a mouse model of diabetes and obesity. Mol Pharm. 2008 Jan-Feb;5(1):77-91. Epub 2008 Jan 12. PubMed, CrossRef
  47. Watanabe N, Dickinson DA, Liu RM, Forman HJ. Quinones and glutathione metabolism. Methods Enzymol. 2004;378:319-40. Review. PubMed, CrossRef
  48. Nomura J, Busso N, Ives A, Matsui C, Tsujimoto S, Shirakura T, Tamura M, Kobayashi T, So A, Yamanaka Y. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice. Sci Rep. 2014 Apr 1;4:4554. PubMed, PubMedCentral, CrossRef
  49. De Minicis S, Brenner DA. Oxidative stress in alcoholic liver disease: role of NADPH oxidase complex. J Gastroenterol Hepatol. 2008 Mar;23 Suppl 1:S98-103. Review. PubMed, CrossRef
  50. Crosas-Molist E, Bertran E, Sancho P, López-Luque J, Fernando J, Sánchez A, Fernández M, Navarro E, Fabregat I. The NADPH oxidase NOX4 inhibits hepatocyte proliferation and liver cancer progression. Free Radic Biol Med. 2014 Apr;69:338-47. PubMed, CrossRef
  51. Zhong W, Gu B, Gu Y, Groome LJ, Sun J, Wang Y. Activation of vitamin D receptor promotes VEGF and CuZn-SOD expression in endothelial cells. J Steroid Biochem Mol Biol. 2014 Mar;140:56-62. PubMed, PubMedCentral, CrossRef
  52. de Borst MH, de Boer RA, Stolk RP, Slaets JP, Wolffenbuttel BH, Navis G. Vitamin D deficiency: universal risk factor for multifactorial diseases? Curr Drug Targets. 2011 Jan;12(1):97-106. Review. PubMed, CrossRef
  53. Bao BY, Ting HJ, Hsu JW, Lee YF. Protective role of 1 alpha, 25-dihydroxyvitamin D3 against oxidative stress in nonmalignant human prostate epithelial cells. Int J Cancer. 2008 Jun 15;122(12):2699-706. PubMed, CrossRef
  54. Jain SK, Micinski D. Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun. 2013 Jul 19;437(1):7-11. PubMed, PubMedCentral, CrossRef
  55. Luong KV, Nguyen LT. The role of vitamin d in autoimmune hepatitis. J Clin Med Res. 2013 Dec;5(6):407-15. Review. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.