Ukr.Biochem.J. 2014; Том 86, №5, вересень-жовтень, c. 82-88

doi: http://dx.doi.org/10.15407/ubj86.05.082

Вивчення сайтів молекули плазміногену, що забезпечують інгібувальний вплив Lys-плазміногену на агрегацію тромбоцитів

Я. М. Рока-Мойя, Д. Д. Жерносєков, О. І. Юсова,
Л. Г. Капустяненко, Т. В. Гриненко

Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
e-mail: chemikdd@mail.ru

Плазміноген/плазмінова система залучена до таких важливих процесів як тромбоутворення, запалення та канцерогенез. Плазміноген та плазмін опосередковують свою дію через плазміногензв’язуючі протеїни, що розташовані на поверхні клітин. Lys-плазміноген, на відміну від Glu-форми, справляє інгібувальний вплив на агрегацію тромбоцитів, стимульовану АDP, колагеном та тромбіном в препаратах збагаченої тромбоцитами плазми та відмитих тромбоцитів. Ми показали, що кринглові домени плазміногену забезпечують взаємодію цієї молекули з поверхневими протеїнами тромбоцитів. Метою роботи було вивчення ролі окремих кринглових доменів у виявленні інгібувального впливу Lys-плазміногену на агрегацію тромбоцитів та визначення можливих плазміногензв’язуючих протеїнів на поверхні тромбоцитів. Усі фрагменти плазміногену (K1-3, K4 і K5), що були взяті для дослідження, знімали інгібувальний вплив Lys-плазміногену на агрегацію тромбоцитів. Показано, що ефект K5 більш виражений порівняно з K1-3 та K4. Препарати біотинільованих Lys-плазміногену, Glu-плазміногену та фрагмента K1-3 виявляли найбільшу афінність до актину, тоді як зв’язування біотинільованих міні-плазміногену та K4 з актином було незначним. Ми припускаємо, що інгібувальний ефект Lys-плазміногену є наслідком взаємодії кринглових доменів цього протеїну з мембранозв’язаними протеїнами, що експонуються на поверхні тромбоцита під час активації та залучаються до процесу тромбоутворення.

Ключові слова: , , , ,


Посилання:

  1. Godier A, Hunt BJ. Plasminogen receptors and their role in the pathogenesis of inflammatory, autoimmune and malignant disease. J Thromb Haemost. 2013 Jan;11(1):26-34. Review. PubMed, CrossRef
  2. Rijken DC, Lijnen HR. New insights into the molecular mechanisms of the fibrinolytic system. J Thromb Haemost. 2009 Jan;7(1):4-13. Epub 2008 Nov 8. Review. PubMed, CrossRef
  3. Xue Y, Bodin C, Olsson K. Crystal structure of the native plasminogen reveals an activation-resistant compact conformation. J Thromb Haemost. 2012 Jul;10(7):1385-96. PubMed, CrossRef
  4. Marshall JM, Brown AJ, Ponting CP. Conformational studies of human plasminogen and plasminogen fragments: evidence for a novel third conformation of plasminogen. Biochemistry. 1994 Mar 29;33(12):3599-606. PubMed, CrossRef
  5. Gong Y, Kim SO, Felez J, Grella DK, Castellino FJ, Miles LA. Conversion of Glu-plasminogen to Lys-plasminogen is necessary for optimal stimulation of plasminogen activation on the endothelial cell surface. J Biol Chem. 2001 Jun 1;276(22):19078-83. Epub 2001 Mar 22. PubMed, CrossRef
  6. Holvoet P, Lijnen HR, Collen D. A monoclonal antibody specific for Lys-plasminogen. Application to the study of the activation pathways of plasminogen in vivo. J Biol Chem. 1985 Oct 5;260(22):12106-11. PubMed
  7. Miles LA, Hawley SB, Baik N, Andronicos NM, Castellino FJ, Parmer RJ. Plasminogen receptors: the sine qua non of cell surface plasminogen activation. Front Biosci. 2005 May 1;10:1754-62. Review. PubMed
  8. Bonnefoy A, Moura R, Hoylaerts MF. The evolving role of thrombospondin-1 in hemostasis and vascular biology. Cell Mol Life Sci. 2008 Mar;65(5):713-27. Review. PubMed, CrossRef
  9. Preissner KT. Specific binding of plasminogen to vitronectin. Evidence for a modulatory role of vitronectin on fibrin(ogen)-induced plasmin formation by tissue plasminogen activator. Biochem Biophys Res Commun. 1990 May 16;168(3):966-71. PubMed
  10. Roka-Moya YM, Zhernossekov DD, Grinenko TV. Plasminogen. plasmin influence on platelet aggregation. Biopolym Сells. 2012;28(5):352-356. CrossRef
  11. Deutsch DG, Mertz ET. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095-6. PubMed, CrossRef
  12. Panyim S, Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337-46. PubMed, CrossRef
  13. Sottrup-Jensen L., Claeys H., Zajdel M., Petersen T. E., Magnusson S. The primary structure of human plasminogen: isolation of two lysine-binding fragment and one “mini-plasminogen” (M.W. 38000) by elastase catalyzed specific limited proteolysis. In: Progress in chemical fibrinolysis and thrombolysis (V. F. Davidson, Rowan R. H., Samama M. M., Desnoyers D. C. Raven Press, New-York.). 1977;3:191-209.
  14. Novokhatny VV, Kudinov SA, Privalov PL. Domains in human plasminogen. J Mol Biol. 1984 Oct 25;179(2):215-32. PubMed
  15. Thewes T, Ramesh V, Simplaceanu EL, Llinás M. Isolation, purification and 1H-NMR characterization of a kringle 5 domain fragment from human plasminogen. Biochim Biophys Acta. 1987 Apr 8;912(2):254-69. PubMed, CrossRef
  16. Gitlin G, Bayer EA, Wilchek M. Studies on the biotin-binding site of avidin. Lysine residues involved in the active site. Biochem J. 1987 Mar 15;242(3):923-6. PubMed, PubMedCentral
  17. Miles LA, Ginsberg MH, White JG, Plow EF. Plasminogen interacts with human platelets through two distinct mechanisms. J Clin Invest. 1986 Jun;77(6):2001-9. PubMed, PubMedCentral, CrossRef
  18. Roka-Moya YM, Bilous VL, Zherno­ssekov DD, Grinenko TV. Novel aspects of platelet aggregation. Biopolym Cell. 2014;30(1):10-15. CrossRef
  19. Chung J, Wang XQ, Lindberg FP, Frazier WA. Thrombospondin-1 acts via IAP/CD47 to synergize with collagen in alpha2beta1-mediated platelet activation. Blood. 1999 Jul 15;94(2):642-8. PubMed
  20. Bonnefoy A, Hantgan R, Legrand C, Frojmovic MM. A model of platelet aggregation involving multiple interactions of thrombospondin-1, fibrinogen, and GP IIbIIIa receptor. J Biol Chem. 2001 Feb 23;276(8):5605-12. Epub 2000 Nov 27. PubMed, CrossRef
  21. De Poli P, Bacon-Baguley T, Kendra-Franczak S, Cederholm MT, Walz DA. Thrombospondin interaction with plasminogen. Evidence for binding to a specific region of the kringle structure of plasminogen. Blood. 1989 Mar;73(4):976-82. PubMed
  22. George JN, Lyons RM, Morgan RK. Membrane changes associated with platelet activation. Exposure of actin on the platelet surface after thrombin-induced secretion. J Clin Invest. 1980 Jul;66(1):1-9. PubMed, PubMedCentral
  23. Wang H, Doll JA, Jiang K, Cundiff DL, Czarnecki JS, Wilson M, Ridge KM, Soff GA. Differential binding of plasminogen, plasmin, and angiostatin 4.5 to cell surface beta-actin: implications for cancer-mediated angiogenesis. Cancer Res. 2006 Jul 15;66(14):7211-5. PubMed, CrossRef
  24. Lucas MA, Fretto LJ, McKee PA. The binding of human plasminogen to fibrin and fibrinogen. J Biol Chem. 1983 Apr 10;258(7):4249-56. PubMed
  25. Lishko VK, Yermolenko IS, Podolnikova NP, Ugarova TP. A novel mechanism controlling the growth of hemostatic thrombi. Ukr Biokhim Zhurn. 2013;85(6):94-105.
  26. Miles LA, Dahlberg CM, Plow EF. The cell-binding domains of plasminogen and their function in plasma. J Biol Chem. 1988 Aug 25;263(24):11928-34. PubMed
  27. Philippeaux MM, Vesin C, Tacchini-Cottier F, Piguet PF. Activated human platelets express beta2 integrin. Eur J Haematol. 1996 Mar;56(3):130-7. PubMed, CrossRef
  28. Chavakis T, Athanasopoulos A, Rhee JS, Orlova V, Schmidt-Wöll T, Bierhaus A, May AE, Celik I, Nawroth PP, Preissner KT. Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood. 2005 Feb 1;105(3):1036-43. Epub 2004 Sep 21. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.