Ukr.Biochem.J. 2013; Том 85, № 4, липень-серпень, c. 20-29

doi: http://dx.doi.org/10.15407/ubj85.04.020

Кінетичні закономірності дії калікс[4]арену С-90 на Са(2+),Mg(2+)-АТРазну активність плазматичної мембрани та на концентрацію Са(2+) в незбуджених клітинах міометрія

Т. О. Векліч1, О. А. Шкрабак1, Ю. Ю. Мазур1, Р. В. Родік2,
В. І. Бойко2, В. І. Кальченко2, С. О. Костерін1

1Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
2Інститут органічної хімії НАН України, Київ;
e-mail: kinet@biochem.kiev.ua; vik@ioch.kiev.ua

Са2+,Mg2+-АТРаза плазматичної мембрани є важливим елементом загального механізму контролю базального тонусу міометрія, яка також частково забезпечує релаксацію м’язової напруги після скорочення м’язу. В експериментах, виконаних на суспензії плазматичних мембран клітин міометрія, обробленій 0,1%-им розчином дигітоніну, досліджували інгібуючу дію калікс[4]арену С-90 (5,11,17,23-тетра(трифтор)метил(фенілсульфоніліміно)-метиламіно-25,26,27,28-тетрапропокси-калікс[4]арен) на Са2+,Mg2+-АТРазну активність ензиму. Калікс[4]арен С-90 ефективно пригнічує Са2+,Mg2+-АТРазну активність ензиму (значення І0,5 для С-90 становить 20,2 ± 0,5 мкМ). Інгібувальна дія калікс[4]арену С-90 на роботу Са2+-помпи передусім пов’язана саме з кооперативним впливом чотирьох просторово орієнтованих на калікс[4]ареновій платформі фенілсульфоніліміно-трифторометилацетамідних груп, а не з дією суто тетрафенольного макроциклу чи з дією окремих фармакофорних сульфоніламідинових груп. Із урахуванням встановлених кінетичних закономірностей інгібувальної дії калікс[4]арену С-90 на Са2+,Mg2+-АТРазну активність плазматичної мембрани розбудовано стаціонарну кінетичну модель контролю рівня базальної концентрації Са2+ в незбуджених міоцитах матки. Припускається, що одержані результати можуть бути перспективними для створення на основі калікс[4]арену С-90, фармакологічного препарату нового («супрамолекулярного») покоління – стимулятора базального тонусу матки.

Ключові слова: , , , , , ,


Посилання:

  1. Austin C, Wray S. Interactions between Ca(2+) and H(+) and functional consequences in vascular smooth muscle. Circ Res. 2000 Feb 18;86(3):355-63. Review. PubMed, CrossRef
  2.  Brini M, Carafoli E. Calcium pumps in health and disease. Physiol Rev. 2009 Oct;89(4):1341-78. Review. PubMed, CrossRef
  3. Burdyga T, Paul RJ. Chapter 86 – Calcium homeostasis and signaling in smooth Muscle. Muscle. Fundamental Biology and Mechanisms of Disease. Edited by J. A. Hill and E. N. Olson. Elsevier Inc. 2012;2:1155-1171.  CrossRef
  4. Fafula RV, Efremova UP, Vorobets ZD. Characteristics of Ca2+, Mg2+-ATPases of peripheral blood lymphocytes of patients with rheumatic pathology. Ukr Biokhim Zhurn. 2012 Nov-Dec;84(6):115-23. Ukrainian. PubMed
  5. Kosterin SO. Kinetics and Energetics of Mg2+,ATP-Dependent Ca2+ Transport in the Plasma Membrane of Smooth Muscle Cells. Neurophysiology. 2003 May;35(3/4):187-200. CrossRef
  6. Carafoli E. The Ca2+ pump of the plasma membrane. J Biol Chem. 1992 Feb 5;267(4):2115-8. Review. PubMed
  7. Rosa AO, Yamaguchi N, Morad M. Mechanical regulation of native and the recombinant calcium channel. Cell Calcium. 2013 Apr;53(4):264-74. PubMed, PubMedCentral, CrossRef
  8. Chen HH, Lin YR, Peng QG, Chan MH. Effects of trichloroethylene and perchloroethylene on muscle contractile responses and epithelial prostaglandin release and acetylcholinesterase activity in swine trachea. Toxicol Sci. 2005 Jan;83(1):149-54. PubMed, CrossRef
  9.  Pande J, Mallhi KK, Grover AK. A novel plasma membrane Ca(2+)-pump inhibitor: caloxin 1A1. Eur J Pharmacol. 2005 Jan 31;508(1-3):1-6. PubMed, CrossRef
  10.  Pande J, Mallhi KK, Grover AK. Role of third extracellular domain of plasma membrane Ca2+-Mg2+-ATPase based on the novel inhibitor caloxin 3A1. Cell Calcium. 2005 Mar;37(3):245-50. PubMed, CrossRef
  11.  Szewczyk MM, Pande J, Akolkar G, Grover AK. Caloxin 1b3: a novel plasma membrane Ca(2+)-pump isoform 1 selective inhibitor that increases cytosolic Ca(2+) in endothelial cells. Cell Calcium. 2010 Dec;48(6):352-7. PubMed, CrossRef
  12. Kopaczyñska M, Wang T, Schulz A, Dudic M, Casnati A, Sansone F, Ungaro R, Fuhrhop JH. Scanning force microscopy of upright-standing, isolated calixarene-porphyrin heterodimers. Langmuir. 2005 Aug 30;21(18):8460-5. PubMedCrossRef
  13. Zhao BT, Blesa MJ, Mercier N, Le Derf F, Sallé M. Bis-calix[4]arenes bridged by an electroactive tetrathiafulvalene unit. J Org Chem. 2005 Aug 5;70(16):6254-7. PubMed, CrossRef
  14. Gutsche CD. Calixarenes Revisited, The Royal Society of Chemistry: Cambridge, 1998. 233p.
  15. Perret F, Lazar AN, Coleman AW. Biochemistry of the para-sulfonato-calix[n]arenes. Chem Commun (Camb). 2006 Jun 21;(23):2425-38. Epub 2006 Mar 10. Review. PubMed, CrossRef
  16. Kalchenko VI, Rodik RV, Boyko VI. Calixarenes. Prospects for medical and biological applications. J Org Pharm Chem. 2005;3(1):13-29.
  17. Da Silva E, Lazar AN, Coleman AW. Biopharmaceutical applications of calixarenes. J Drug Del Sci Tech. 2004;14(1): 3-20.  CrossRef
  18.  Rodik RV. Application of calixarenes for DNA transfection in cells. Ukr Biokhim Zhurn. 2012 Sep-Oct;84(5):5-15. Review. Ukrainian. PubMed
  19.  Coleman AW, Jebors S, Cecillon S, Perret P, Garin D, Marti-Battle D, Moulin M. Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New J Chem. 2008;32(5):780-782. CrossRef
  20. Da Silva E, Lazar AN, Coleman AW. Biopharmaceutical applications of calixarenes. J Drug Del Sci Tech. 2004;14(1): 3-20.  CrossRef
  21. Rodik R, Boiko V, Danylyuk O, Suwinska K, Tsymbal I, Slinchenko N, Babich L, Shlykov S, Kosterin S, Lipkowski J, Kalchenko V. Calix[4]arenesulfonylamidines. Synthesis, structure and influence on Mg2+, ATP-dependent calcium pumps. Tetrahedron Lett. 2005 Oct;46(43):7459-7462.  CrossRef
  22.  Veklich TO, Kosterin SO. Comparative study of properties of Na+, K+-ATPase and Mg2+-ATPase of the myometrium plasma membrane. Ukr Biokhim Zhurn. 2005 Mar-Apr;77(2):66-75. Ukrainian. PubMed
  23. Kondratiuk TP, Bychenok SF, Prishchepa LA, Babich LG, Kurskiy MD.  Isolation and characteristics of the plasma membrane fraction from the swine myometrium. Ukr Biokhim Zhurn. 1986 Jul-Aug;58(4):50-6.  Russian. PubMed
  24. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72(1-2):248-54. PubMed, CrossRef
  25.  Flynn ER, Bradley KN, Muir TC, McCarron JG. Functionally separate intracellular Ca2+ stores in smooth muscle. J Biol Chem. 2001 Sep 28;276(39):36411-8. PubMed, CrossRef
  26.  Valente RC, Capella LS, Monteiro RQ, Rumjanek VM, Lopes AG, Capella MA. Mechanisms of ouabain toxicity. FASEB J. 2003 Sep;17(12):1700-2. PubMed, CrossRef
  27. Wang H, Haas M, Liang M, Cai T, Tian J, Li S, Xie Z. Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J Biol Chem. 2004 Apr 23;279(17):17250-9. PubMedCrossRef
  28. Veklich TO, Kosterin SO, Shynlova OP. Cationic specificity of a Ca2+-accumulating system in smooth muscle cell mitochondria. Ukr Biokhim Zhurn. 2002 Jan-Feb;74(1):42-8. Ukrainian. PubMed
  29. Rathbun WB, Betlach MV. Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Anal Biochem. 1969 Apr 4;28(1):436-45. PubMedCrossRef
  30. Tidow H, Poulsen LR, Andreeva A, Knudsen M, Hein KL, Wiuf C, Palmgren MG, Nissen P. A bimodular mechanism of calcium control in eukaryotes. Nature. 2012 Nov 15;491(7424):468-72. PubMed, CrossRef
  31. Kosterin SA. Calcium transport in smooth muscle. Kiev: Naukova dumka. 1990. 216 p.
  32. Oloizia B, Paul RJ. Ca2+ clearance and contractility in vascular smooth muscle: evidence from gene-altered murine models. J Mol Cell Cardiol. 2008 Sep;45(3):347-62. Review. PubMed, PubMedCentral, CrossRef
  33. McFadzean I, Gibson A. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br J Pharmacol. 2002 Jan;135(1):1-13. Review. PubMed, PubMedCentral, CrossRef
  34. Daub B, Ganitkevich VYa. An estimate of rapid cytoplasmic calcium buffering in a single smooth muscle cell. Cell Calcium. 2000 Jan;27(1):3-13. PubMed, CrossRef
  35. Kosterin SA, Burdyga ThV, Fomin VP, Grover AK. Control of Uterine Contractility. Eds. R. E. Garfield, T. N. Tabb. – CRC Press, Boca Raton, Ann. Arbor, London, Tokyo, 1994. P.129-153.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.