Ukr.Biochem.J. 2013; Том 85, № 5, вересень-жовтень, c. 37-49

doi: http://dx.doi.org/10.15407/ubj85.05.037

Вплив Ca(2+)-індукованого відкривання циклоспоринчутливої пори на споживання кисню і функціoнальний стан мітохондрій печінки щурів

 О. В. Акопова, В. І. Носар, І. М. Маньковська, В. Ф. Сагач

Інститут фізіології ім. О. О. Богомольця НАН України, Київ;
e-mail: a-dubensky@mail.ru

Досліджено вплив Са2+-індукованого відкривання циклоспоринчутливої пори (mitochondrial permeability transition pore, MPTP) на споживання кисню і функціональний стан мітохондрій печінки щурів. Показано, що за відсутності деполяризації функціональна активність МРТР призводить до підвищення стаціонарної швидкості дихання за окиснення субстрату (глутамату) внаслідок активації циклоспоринчутливого Са2++-обміну і циклічного транспорту Са2+, який підтримується одночасною роботою МРТР і Са2+-уніпортера. За допомогою селективних блокаторів, циклоспорину А и рутенієвого червоного показано, що МРТР і Са2+-уніпортер роблять близький за величиною внесок в Са2+-цикл і швидкість дихання мітохондрій. Встановлено, що біоенергетичні ефекти відкривання МРТР в стаціонарних умовах (підвищення швидкості дихання у разі окислення субстрату за відсутності ADP, зниження дихального контролю та енергетичної ефективності синтезу АТР, Р/О) близькі до функціональних змін внаслідок підвищення ендогенної протонної провідності мембрани митохондрій. Роз’єднуючий ефект МРТР майже не впливає на швидкість фосфорилювання, відносна стабільність якої підтримується за рахунок активації дихального ланцюга і підвищення швидкості дихання в стані 3. Зроблено висновок, що за нормальних фізіологічних умов МРТР може функціонувати як ендогенний механізм «м’якого» протонофорного роз’єднання дихального ланцюга.

Ключові слова: , , , , ,


Посилання:

  1. Skulachev VP. Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Aspects Med. 1999 Jun;20(3):139-84. Review. PubMed, CrossRef
  2. Acuña-Castroviejo D, Martín M, Macías M, Escames G, León J, Khaldy H, Reiter RJ. Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res. 2001 Mar;30(2):65-74. Review. PubMed, CrossRef
  3. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD. Calcium and mitochondria. FEBS Lett. 2004 Jun 1;567(1):96-102. Review. PubMed, CrossRef
  4. Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 2004 Jan 22;427(6972):360-4. PubMed, CrossRef
  5. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004 Oct;287(4):C817-33. Review. PubMedCrossRef
  6. Brown GC. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta. 1999 May 5;1411(2-3):351-69. PubMedCrossRef
  7. Feissner RF, Skalska J, Gaum WE, Sheu SS. Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci (Landmark Ed). 2009 Jan 1;14:1197-218. Review. PubMed, PubMedCentral, CrossRef
  8. Grijalba MT, Vercesi AE, Schreier S. Ca2+-induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca2+-stimulated generation of reactive oxygen species by the respiratory chain. Biochemistry. 1999 Oct 5;38(40):13279-87. PubMed, CrossRef
  9. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007 Jan;87(1):99-163. Review. PubMed, CrossRef
  10. Kinnally KW, Peixoto PM, Ryu SY, Dejean LM. Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta. 2011 Apr;1813(4):616-22. Epub 2010 Oct 1. Review. PubMed, PubMedCentral, CrossRef
  11. Beutner G, Rück A, Riede B, Brdiczka D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta. 1998 Jan 5;1368(1):7-18. PubMedCrossRef
  12. Crompton M, Barksby E, Johnson N, Capano M. Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie. 2002 Feb-Mar;84(2-3):143-52. Review. PubMed, CrossRef
  13. Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol. 2000 Nov 15;529(Pt 1):57-68. Review. PubMed, PubMedCentral, CrossRef
  14. Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 2003 Aug 22;93(4):292-301. Review. PubMed, CrossRef
  15.  Gulbins E, Dreschers S, Bock J. Role of mitochondria in apoptosis. Exp Physiol. 2003 Jan;88(1):85-90. Review. PubMed, CrossRef
  16. Cai J, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem. 1998 May 8;273(19):11401-4. PubMed, CrossRef
  17. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta. 2006 May-Jun;1757(5-6):509-17. Review. PubMed, CrossRef
  18. Busija DW, Lacza Z, Rajapakse N, Shimizu K, Kis B, Bari F, Domoki F, Horiguchi T. Targeting mitochondrial ATP-sensitive potassium channels–a novel approach to neuroprotection. Brain Res Brain Res Rev. 2004 Nov;46(3):282-94. Review. PubMed, CrossRef
  19. Szabó I, De Pinto V, Zoratti M. The mitochondrial permeability transition pore may comprise VDAC molecules. II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett. 1993 Sep 13;330(2):206-10. PubMed, CrossRef
  20. Cheng Y, Debska-Vielhaber G, Siemen D. Interaction of mitochondrial potassium channels with the permeability transition pore. FEBS Lett. 2010 May 17;584(10):2005-12. Epub 2009 Dec 27. Review. PubMed, CrossRef
  21. Akopova OV, Korkach IuP, Kotsiuruba AV, Kolchyns’ka LI, Sagach VF. Reactive nitrogen and oxygen species metabolism in rat heart mitochondria upon administration of NO donor in vivo. Fiziol Zhurn. 2012;58(2):3-15. Ukrainian. PubMed
  22. Altschuld RA, Hohl CM, Castillo LC, Garleb AA, Starling RC, Brierley GP. Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes. Am J Physiol. 1992 Jun;262(6 Pt 2):H1699-704. PubMed
  23. Kass GE, Juedes MJ, Orrenius S. Cyclosporin A protects hepatocytes against prooxidant-induced cell killing. A study on the role of mitochondrial Ca2+ cycling in cytotoxicity. Biochem Pharmacol. 1992 Nov 17;44(10):1995-2003. PubMed, CrossRef
  24. Sahach VF, Bohuslavs’kyy AIu, Dmytriieva AV, Nadtochiy SM. Role of nitric oxide and mitochondrial permeability pore in changes of oxygen consumption in the working skeletal muscle. Fiziol Zhurn. 2004;50(2):19-26. Ukrainian. PubMed
  25. Estabrook RW. Mitochondrial respiratory control and the polarographic measurement of ADP : O ratios. Methods Enzymol. 1967;10:41-47.  CrossRef
  26. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445-502. Review. PubMed, CrossRef
  27. Hutson SM, Pfeiffer DR, Lardy HA. Effect of cations and anions on the steady state kinetics of energy-dependent Ca2+ transport in rat liver mitochondria. J Biol Chem. 1976 Sep 10;251(17):5251-8. PubMed
  28. Hutson SM. Steady state kinetics of energy-dependent Ca2+ uptake in rat liver mitochondria.J Biol Chem. 1977 Jul 10;252(13):4539-45. PubMed
  29. Broekemeier KM, Schmid PC, Schmid HH, Pfeiffer DR. Effects of phospholipase A2 inhibitors on ruthenium red-induced Ca2+ release from mitochondria. J Biol Chem. 1985 Jan 10;260(1):105-13. PubMed
  30. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med. 2004 Sep 15;37(6):755-67. Review. PubMed, CrossRef
  31.  Petronilli V, Cola C, Massari S, Colonna R, Bernardi P. Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. J Biol Chem. 1993 Oct 15;268(29):21939-45. PubMed
  32. Pozzan T, Bragadin M, Azzone GF. Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux. Biochemistry. 1977 Dec 13;16(25):5618-25. PubMed, CrossRef
  33. Akopova OV, Sahach VF. Proton transport is necessary for divalent metal cations release from deenergized mitochondria. Ukr Biokhim Zhurn. 2007 Jan-Feb;79(1):58-67. Russian. PubMed
  34. Akopova OV. The role of mitochondrial permeability transition pore in transmembrane Ca2+-exchange in mitochondria. Ukr Biokhim Zhurn. 2008 May-Jun;80(3):40-7. Ukrainian. PubMed
  35. Liu SS. Cooperation of a “reactive oxygen cycle” with the Q cycle and the proton cycle in the respiratory chain–superoxide generating and cycling mechanisms in mitochondria. J Bioenerg Biomembr. 1999 Aug;31(4):367-76. Review. PubMed, CrossRef
  36. Nicholls D, Akerman K. Mitochondrial calcium transport. Biochim Biophys Acta. 1982 Sep 1;683(1):57-88. Review. PubMed, CrossRef
  37. Akopova OV, Kolchynskayia LY, Nosar’ VY, Smyrnov AN, Malisheva MK, Man’kovskaia YN, Sahach VF. The effect of permeability transition pore opening on reactive oxygen species production in rat brain mitochondria. Ukr Biokhim Zhurn. 2011 Nov-Dec;83(6):46-55. PubMed
  38. Akopova OV, Sagach VF. Decrease of mitochondrial sensitivity to Ca2+-induced pore opening during long-term incubation. Ukr Biokhim Zhurn. 2004  Sep-Oct;76(5):61-5. Russian. PubMed
  39. Hinkle PC. P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta. 2005 Jan 7;1706(1-2):1-11. Review. PubMed, CrossRef
  40. Beavis AD, Lehninger AL. The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Stoichiometry of oxidative phosphorylation. Eur J Biochem. 1986 Jul 15;158(2):315-22. PubMed, CrossRef
  41. Heaton GM, Nicholls DG. The calcium conductance of the inner membrane of rat liver mitochondria and the determination of the calcium electrochemical gradient. Biochem J. 1976 Jun 15;156(3):635-46. PubMed, PubMedCentral, CrossRef
  42. Hutter E, Renner K, Pfister G, Stöckl P, Jansen-Dürr P, Gnaiger E. Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochem J. 2004 Jun 15;380(Pt 3):919-28. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.