Ukr.Biochem.J. 2016; Том 88, № 6, листопад-грудень, c. 45-51

doi: https://doi.org/10.15407/ubj88.06.045

Перерозподіл петельних доменів ДНК у лімфоцитах людини у разі бласттрансформації за впливу інтерлейкіну 2

К. С. Афанасьєва, М. І. Чопей, О. В. Лозовик, С. Р. Рушковський, А. В. Сиволоб

ННЦ «Інститут біології та медицини», Київський національний
університет імені Тараса Шевченка, Україна;
e-mail: aphon@ukr.net

На вищих рівнях організації в інтерфазному ядрі хроматинові фібрили формують петельні домени. В основі петель часто знаходяться регуляторні ділянки генів – промотори і енхансери. Внаслідок цього петельні домени відіграють важливу роль у регуляції транскрипційної активності клітини. Досліджено кінетику виходу петель ДНК за кометного електрофорезу нуклеоїдів, одержаних із клітин двох типів, які відрізняються за своєю синтетичною активністю – лімфоцитів та лімфобластів людини. Активація лімфоцитів із перетворенням їх у лімфобласти (бласттрансформація) досягалася за допомогою інтерлейкіну 2. Одержані результати свідчать про перерозподіл петель у нуклеоїдах за активації (трансформації) лімфоцита. Після бласттрансформації на поверхні нуклеоїда спостерігалося збільшення кількості петель, що знаходяться на поверхні нуклеоїда, на фоні зниження частки внутрішніх петель. Таким чином, кометний електрофорез може бути використаний для реєстрації масштабних змін у клітинному ядрі, що супроводжують зміни функціонального статусу клітин.

Ключові слова: , , , ,


Посилання:

  1. Cook PR, Brazell IA, Jost E. Characterization of nuclear structures containing superhelical DNA. J Cell Sci. 1976 Nov;22(2):303-24. PubMed
  2. Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet. 2013 Jun;14(6):390-403. Review. PubMed, PubMedCentral, CrossRef
  3. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014 Dec 18;159(7):1665-80. PubMed, CrossRef
  4. Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke A, Melnikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci USA. 2015 Nov 24;112(47):E6456-65.  PubMed, PubMedCentral, CrossRef
  5. Kadauke S, Blobel GA. Chromatin loops in gene regulation. Biochim Biophys Acta. 2009 Jan;1789(1):17-25. Review. PubMed, PubMedCentral, CrossRef
  6. Cook PR. A model for all genomes: the role of transcription factories. J Mol Biol. 2010 Jan 8;395(1):1-10. Review. PubMed, CrossRef
  7. Tang Z, Luo OJ, Li X, Zheng M, Zhu JJ, Szalaj P, Trzaskoma P, Magalska A, Wlodarczyk J, Ruszczycki B, Michalski P, Piecuch E, Wang P, Wang D, Tian SZ, Penrad-Mobayed M, Sachs LM, Ruan X, Wei CL, Liu ET, Wilczynski GM, Plewczynski D, Li G, Ruan Y. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. Cell. 2015 Dec 17;163(7):1611-27. PubMed, PubMedCentral, CrossRef
  8. 30 years of the comet assay: an overview with some new insights (Azqueta A., Langie S., Collins A., eds.). Lausanne: Frontiers Media, 2015. 174 p.
  9. Collins AR, Oscoz AA, Brunborg G, Gaivão I, Giovannelli L, Kruszewski M, Smith CC, Stetina R. The comet assay: topical issues. Mutagenesis. 2008 May;23(3):143-51. Review. PubMed, CrossRef
  10. Afanasieva K, Zazhytska M, Sivolob A. Kinetics of comet formation in single-cell gel electrophoresis: loops and fragments. Electrophoresis. 2010 Jan;31(3):512-9. PubMed, CrossRef
  11. Afanasieva K, Chopei M, Zazhytska M, Vikhreva M, Sivolob A. DNA loop domain organization as revealed by single-cell gel electrophoresis. Biochim Biophys Acta. 2013 Dec;1833(12):3237-44. PubMed, CrossRef
  12. Zazhytska MO, Afanasieva KS, 1Chopei MI, Vikhreva MA, Sivolob AV. Influence of chloroquine on kinetics of single-cell gel electrophoresis. Biopolym Cell. 2012; 28(4):292-297. CrossRef
  13. Mookerjee BK, Pauly JL. Mitogenic effect of interleukin-2 on unstimulated human T cells: an editorial review. J Clin Lab Anal. 1990;4(2):138-49. Review. PubMed, CrossRef
  14. Kaplan O, Aebersold P, Cohen JS. Metabolism of peripheral lymphocytes, interleukin-2-activated lymphocytes and tumor-infiltrating lymphocytes from 31P NMR studies. FEBS Lett. 1989 Nov 20;258(1):55-8. PubMed, CrossRef
  15. Bachmann MF, Oxenius A. Interleukin 2: from immunostimulation to immunoregulation and back again. EMBO Rep. 2007 Dec;8(12):1142-8. Review. PubMed, PubMedCentral, CrossRef
  16. Watt JL, Stephen GS. Lymphocyte culture for chromosome analysis. In: DE Rooney and BH Czepulkowski (Eds.), Human Cytogenetics. A practical approach. IRL Press, Oxford, 1986, p. 39-55.
  17. Mzali R, Seguin L, Liot C, Auger A, Pacaud P, Loirand G, Thibault C, Pierre J, Bertoglio J. Regulation of Rho signaling pathways in interleukin-2-stimulated human T-lymphocytes. FASEB J. 2005 Nov;19(13):1911-3. PubMed, CrossRef
  18. Bain BJ. Blood cells: a practical guide. Oxford: Blackwell Publishing, 2006. 476 p. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.