Ukr.Biochem.J. 2018; Том 90, № 3, травень-червень, c. 62-69

doi: https://doi.org/10.15407/ubj90.03.062

Вплив мелатоніну на пероксидне окислення ліпідів, окислювальну модифікацію протеїнів та набухання мітохондрій у скелетній м’язовій тканині щурів в умовах алоксанового діабету

І. В. Геруш, В. В. Бевзо, Є. О. Ференчук

ВДНЗ України «Буковинський державний медичний університет», Чернівці;
e-mail: yelena_f@ukr.net

Метою роботи було дослідити вплив мелатоніну на інтенсивність пероксидного окислення ліпідів, окислювальну модифікацію протеїнів та набухання мітохондрій у скелетній м’язовій тканині щурів в умовах алоксанового діабету. Діабет у щурів моделювали введенням 5%-го розчину алоксанмоногідрату (150 мг/кг). Встановлено, що вміст ТБК-активних продуктів у мітохондріальній фракції скелетних м’язів щурів із алоксановим діабетом зростав на фоні зменшення числа вільних SH-груп та накопичення карбонільних похідних протеїнів мітохондрій. Виявлено корегуючий вплив мелатоніну на процеси вільнорадикального окислення ліпідів і протеїнів мітохондрій та на інтенсивність їх набухання.

Ключові слова: , , , ,


Посилання:

  1. Standards of medical care in diabetes. American Diabetes Association. 2016; 39: 112.
  2. Handelsman Y, Bloomgarden ZT, Grunberger G, Umpierrez G, Zimmerman RS, Bailey TS, Blonde L, Bray GA, Cohen AJ, Dagogo-Jack S, Davidson JA, Einhorn D, Ganda OP, Garber AJ, Garvey WT, Henry RR, Hirsch IB, Horton ES, Hurley DL, Jellinger PS, Jovanovič L, Lebovitz HE, LeRoith D, Levy P, McGill JB, Mechanick JI, Mestman JH, Moghissi ES, Orzeck EA, Pessah-Pollack R, Rosenblit PD, Vinik AI, Wyne K, Zangeneh F.
    American association of clinical endocrinologists and american college of endocrinology – clinical practice guidelines for developing a diabetes mellitus comprehensive care plan – 2015.  Endocr Pract. 2015 Apr;21(Suppl 1):1-87. PubMed, PubMedCentral, CrossRef
  3. Kyznietsova MY, Halenova TI, Savchuk OM,Vereschaka VV, Ostapchenko LI. Carbohydrate metabolism in type 1 diabetic rats under the conditions of the kidney bean pods aqueous extract application. Fiziol Zh. 2015; 61(6): 96-103.  (In Ukrainian). PubMed, CrossRef
  4. Smith CJ, Ryckman KK. Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome. Diabetes Metab Syndr Obes. 2015 Jun 29;8:295-302. PubMed, PubMedCentral, CrossRef
  5. Gumieniczek A, Hopkała H, Wójtowicz Z, Nieradko M. Differences in antioxidant status in skeletal muscle tissue in experimental diabetes. Clin Chim Acta. 2001 Dec;314(1-2):39-45.   PubMed, CrossRef
  6. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009 Nov;32(Suppl 2):S157-63.  PubMedPubMedCentral, CrossRef
  7. D’Souza DM, Al-Sajee D, Hawke TJ. Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol. 2013 Dec 20;4:379. PubMedPubMedCentral, CrossRef
  8. Sreekumar R, Nair KS. Skeletal muscle mitochondrial dysfunction & diabetes. Indian J Med Res. 2007 Mar;125(3):399-410. PubMed
  9. Phielix E, Mensink M. Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav. 2008 May 23;94(2):252-8.  PubMed, CrossRef
  10. Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys. 2001;34(2):237-56. PubMedCrossRef
  11. Lyu BN, Lyu MB. The Oxygen-Peroxide Concept of Apoptosis: Increased Argumentation and Further Development. Biol Bull Rev. 2005; 125(6): 567-578.
  12. Anisimov VN, Popovich IG, Zabezhinski MA, Anisimov SV, Vesnushkin GM, Vinogradova IA. Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim Biophys Acta. 2006 May-Jun;1757(5-6):573-89. PubMed, CrossRef
  13. Cardinali DP, Vigo DE. Melatonin, mitochondria, and the metabolic syndrome. Cell Mol Life Sci. 2017 Nov;74(21):3941-3954.   PubMedCrossRef
  14. Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci. 2017 Nov;74(21):3863-3881.  PubMed, CrossRef
  15. Weinbach EC. A procedure for isolating stable mitochondria from rat liver and kidney. Anal Biochem. 1961 Aug;2(4):335-43. PubMed, CrossRef
  16. Silaeva SA, Danilova NI, Debov SS. Various properties of ribonucleotide reductase from rat liver mitochondria. Biokhimiia. 1975 Jul-Aug;40(4):711-5. (In Russian). PubMed
  17. Trudolyubova MT. Quantification of RNA and DNA in subcellular cell fractions animals. Modern Methods of Biochemistry. Ed. by. V.N. Orekhovich. M.: Medicine, 1977. 313-316 p. (Іn Russian).
  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265-75. PubMed
  19. Stalnaya ID, Garishvili TG. Method of measuring of malonicdialdehyde by thiobarbituric acid. Modern Methods of Biochemistry. Ed. by. V.N. Orekhovich. M.: Medicine, 1977. 66-68 p. (In Russian).
  20. Lider VA, Bogdanov NG. Effect of naphthoquinones and tocopherols on the changes in mitochondrial volume. Ukr Biokhim Zhurn. 1985 Jan-Feb;57(1):82-5. (In Russian). PubMed
  21. Eisenhofer S, Toókos F, Hense BA, Schulz S, Filbir F, Zischka H. A mathematical model of mitochondrial swelling. BMC Res Notes. 2010 Mar 11;3:67. PubMed, PubMedCentral, CrossRef
  22. Dubinina EE, Burmistrov SO, Khodov DA, Porotov IG. Oxidative modification of human serum proteins. A method of determining it. Vopr Med Khim. 1995 Jan-Feb;41(1):24-6. (In Russian). PubMed
  23. Murphy ME, Kehrer JP. Oxidation state of tissue thiol groups and content of protein carbonyl groups in chickens with inherited muscular dystrophy. Biochem J. 1989 Jun 1;260(2):359-64. PubMed, PubMedCentral, CrossRef
  24. Lapach SN, Chubenko AV, Babich PN. Static methods in biomedical research using Exel. K.: Moion, 2000. 320 p. (In Russian).
  25. Bazwinsky-Wutschke I, Bieseke L, Mühlbauer E, Peschke E. Influence of melatonin receptor signalling on parameters involved in blood glucose regulation. J Pineal Res. 2014 Jan;56(1):82-96. PubMed, CrossRef
  26. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA. 2009 Mar 17;106(11):4453-8.  PubMed, PubMedCentral, CrossRef
  27. Nishida S, Segawa T, Murai I, Nakagawa S. Long-term melatonin administration reduces hyperinsulinemia and improves the altered fatty-acid compositions in type 2 diabetic rats via the restoration of Delta-5 desaturase activity. J Pineal Res. 2002 Jan;32(1):26-33. PubMed, CrossRef
  28. Espino J, Pariente JA, Rodríguez AB. Role of melatonin on diabetes-related metabolic disorders. World J Diabetes. 2011 Jun 15;2(6):82-91.  PubMed, PubMedCentral, CrossRef
  29. Ha E, Yim SV, Chung JH, Yoon KS, Kang I, Cho YH, Baik HH. Melatonin stimulates glucose transport via insulin receptor substrate-1/phosphatidylinositol 3-kinase pathway in C2C12 murine skeletal muscle cells. J Pineal Res. 2006 Aug;41(1):67-72. PubMed, CrossRef
  30. Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin. Cell Mol Life Sci. 2017 Nov;74(21):3897-3911.  PubMed, CrossRef
  31. Hardeland R. Melatonin and the electron transport chain. Cell Mol Life Sci. 2017 Nov;74(21):3883-3896. PubMed, CrossRef
  32. Nishida S. Metabolic effects of melatonin on oxidative stress and diabetes mellitus. Endocrine. 2005 Jul;27(2):131-6. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.