Шляхи та механізми трансмембранного обміну іонів Са в клітинному ядрі

Т. О. Векліч, Ю. В. Ніконішина, С. О. Костерін

Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
e-mail: veklich@biochem.kiev.ua

Функції Са2+ в клітинному ядрі різноманітні (регуляція транскрипції генів, проникності ядерних пор, активація ензимів, залучених в апоптоз) та визначають долю будь-якого типу клітини. Тому шляхи надходження Са2+ до ядра, питання взаємозв’язку цитозольних та ядерних кальцієвих сигналів, накопичення та виходу Са2+ з ядерних депо та їхня подальша роль являють неабиякий інтерес. В огляді узагальнено дані літератури і результати власних досліджень щодо особливостей транспорту Са2+ в клітині, зокрема зосереджено увагу на транспортних системах та загальних механізмах обміну цього вторинного месенджера в центральній органелі клітини – ядрі. Також розглянуто загальну структуру клітинного ядра, транспортери ядерної оболонки, функції Са2+ в ядрі та порушення кальцієвого сигналінгу в ядрі.

Ключові слова: , , , ,


Посилання:

  1. Kosterin SO, Babich LG, Shlykov SG, Danylovych IuV, Veklich ТО,  Mazur YuYu. Biochemical properties and regulation of smooth muscle cell Са2+-transporting systems. K.: Science opinion, 2016. 210 р.
  2. Babich LG. Membrane mechanisms whereby [Ca2+]i is regulated in smooth muscle cells. I. Energy-dependent systems of Ca2+ transport in smooth muscles. Ukr Biokhim Zhurn. 1999;71(5):10-22. (In Ukrainian). PubMed
  3. Kosterin SO. Calcium transport in smooth muscles. K.: Science opinion, 1990. 216 р.
  4. Veklich ТО,  Mazur YuYu, Kosterin SO. Mg2+,ATP-dependent plasma membrane calcium pump of smooth muscle cells. І. Structural organization and properties. Ukr Biochem J. 2015 Jan-Feb;87(1):5-20. (In Ukrainian). PubMed, CrossRef
  5. Clapham DE. Calcium signaling. Cell. 1995 Jan 27;80(2):259-68. PubMed
  6. Pu Y, Chang DC. Cytosolic Ca(2+) signal is involved in regulating UV-induced apoptosis in hela cells. Biochem Biophys Res Commun. 2001 Mar 23;282(1):84-9. PubMed, CrossRef
  7. Somlyo AP, Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol. 2000 Jan 15;522(2):177-85. PubMed, PubMedCentral, CrossRef
  8. Kosterin SA, Bratkova NF, Babich LG, Shinlova OP, Slinchenko NN, Shlykov SG, Zimina BP, Rovenets NA, Velkich TA. Effect of inhibitors of energy-dependent Ca2+-transporting systems on calcium pumps of a smooth muscle cell. Ukr Biokhim Zhurn. 1996 Nov-Dec;68(6):50-61. (In Russian). PubMed
  9. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998 Jun 12;280(5370):1763-6. PubMed, CrossRef
  10. Sanborn BM. Hormonal signaling and signal pathway crosstalk in the control of myometrial calcium dynamics. Semin Cell Dev Biol. 2007 Jun;18(3):305-14.  PubMed, PubMedCentral, CrossRef
  11. Levitsky DO. Calcium and biological membranes. M.: Vyschaya shkola publ., 1990. 124 p. (In Russian).
  12. Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev. 2000 Jul;80(3):1215-65. PubMedCrossRef
  13. Marshall WJ. Clinical Biochemistry. Moscow: Publ. BINOM, 2015. 408 p. (In Russian).
  14. Babich LG, Shlykov SG, Strutinskaia NA, Kosterin SA. Properties of the smooth muscle cell endoplasmic reticulum calcium pump. Ukr Biokhim Zhurn. 1999 Mar-Apr;71(2):20-7. (In Russian). PubMed
  15. Veklich TO, Kosterin SO, Shynlova OP. Cationic specificity of a Ca2+-accumulating system in smooth muscle cell mitochondria. Ukr Biokhim Zhurn. 2002 Jan-Feb;74(1):42-8. (In Ukrainian). PubMed
  16. Kosterin SA, Babich LG, Shlykov SG, Rovenets NA. Mg2+,ATP-dependent transport of Ca2+ in the endoplasmic reticulum of myometrial cells. Biokhimiia. 1996 Jan;61(1):73-81. (In Russian). PubMed
  17. Shinlova OP, Kosterin SA, Veklich TA. Ruthenium red inhibits energy-dependent and passive Ca2+ transport in permeabilized smooth muscle cells. Biokhimiia. 1996 Aug;61(8):1440-7. (In Russian). PubMed
  18. Brini M, Murgia M, Pasti L, Picard D, Pozzan T, Rizzuto R. Nuclear Ca2+ concentration measured with specifically targeted recombinant aequorin. EMBO J. 1993 Dec;12(12):4813-9. PubMed, PubMedCentral
  19. Matyshevska OP, Borisov SI, Grebinyk DM. Particulars on the regulation of Ca(2+) in the cell nucleus. Ukr Biokhim Zhurn. 2002 Sep-Oct;74(5):5-11. (In Ukrainian). PubMed
  20. Malviya AN, Rogue PJ. “Tell me where is calcium bred”: clarifying the roles of nuclear calcium. Cell. 1998 Jan 9;92(1):17-23. PubMed, CrossRef
  21. LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci. 2002 Nov;3(11):862-72. PubMed, CrossRef
  22. Ivannikov MV, Macleod GT. Mitochondrial free Ca²⁺ levels and their effects on energy metabolism in Drosophila motor nerve terminals. Biophys J. 2013 Jun 4;104(11):2353-61. PubMed, PubMedCentral, CrossRef
  23. Contreras L, Drago I, Zampese E, Pozzan T. Mitochondria: the calcium connection. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):607-18. PubMed, CrossRef
  24. White PJ, Broadley MR. Calcium in plants. Ann Bot. 2003 Oct;92(4):487-511.  PubMed, PubMedCentral, CrossRef
  25. Kondratev D, Gallitelli MF. Increments in the concentrations of sodium and calcium in cell compartments of stretched mouse ventricular myocytes. Cell Calcium. 2003 Aug;34(2):193-203. PubMed, CrossRef
  26. Badminton MN, Campbell AK, Rembold CM. Differential regulation of nuclear and cytosolic Ca2+ in HeLa cells. J Biol Chem. 1996 Dec 6;271(49):31210-4. PubMed, CrossRef
  27. Petersen OH, Gerasimenko OV, Gerasimenko JV, Mogami H, Tepikin AV. The calcium store in the nuclear envelope. Cell Calcium. 1998 Feb-Mar;23(2-3):87-90. PubMed, CrossRef
  28. Badminton MN, Kendall JM, Sala-Newby G, Campbell AK. Nucleoplasmin-targeted aequorin provides evidence for a nuclear calcium barrier. Exp Cell Res. 1995 Jan;216(1):236-43. PubMed, CrossRef
  29. Badminton MN, Kendall JM, Rembold CM, Campbell AK. Current evidence suggests independent regulation of nuclear calcium. Cell Calcium. 1998 Feb-Mar;23(2-3):79-86. PubMed, CrossRef
  30. Papadia S, Stevenson P, Hardingham NR, Bading H, Hardingham GE. Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J Neurosci. 2005 Apr 27;25(17):4279-87. PubMed, CrossRef
  31. Hardingham GE, Chawla S, Cruzalegui FH, Bading H. Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels. Neuron. 1999 Apr;22(4):789-98. PubMed, CrossRef
  32. Linseman DA, Bartley CM, Le SS, Laessig TA, Bouchard RJ, Meintzer MK, Li M, Heidenreich KA. Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca(2+)/calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival. J Biol Chem. 2003 Oct 17;278(42):41472-81. PubMed, CrossRef
  33. McKenzie GJ, Stevenson P, Ward G, Papadia S, Bading H, Chawla S, Privalsky M, Hardingham GE. Nuclear Ca2+ and CaM kinase IV specify hormonal- and Notch-responsiveness. J Neurochem. 2005 Apr;93(1):171-85. PubMed, CrossRef
  34. Limbäck-Stokin K, Korzus E, Nagaoka-Yasuda R, Mayford M. Nuclear calcium/calmodulin regulates memory consolidation. J Neurosci. 2004 Dec 1;24(48):10858-67. PubMed, CrossRef
  35. Bading H. Nuclear calcium signalling in the regulation of brain function. Nat Rev Neurosci. 2013 Sep;14(9):593-608. PubMed, CrossRef
  36. Hayer SN, Bading H. Nuclear calcium signaling induces expression of the synaptic organizers Lrrtm1 and Lrrtm2. J Biol Chem. 2015 Feb 27;290(9):5523-32. PubMed, PubMedCentral, CrossRef
  37. Bootman MD, Fearnley C, Smyrnias I, MacDonald F, Roderick HL. An update on nuclear calcium signalling. J Cell Sci. 2009 Jul 15;122(Pt 14):2337-50.  PubMed, CrossRef
  38. Oliveira AG, Guimarães ES, Andrade LM, Menezes GB, Fatima Leite M. Decoding calcium signaling across the nucleus. Physiology (Bethesda). 2014 Sep;29(5):361-8. PubMed, PubMedCentral, CrossRef
  39. Fedirko N, Gerasimenko JV, Tepikin AV, Gerasimenko OV. Regulation of early response genes in pancreatic acinar cells: external calcium and nuclear calcium signalling aspects. Acta Physiol (Oxf). 2009 Jan;195(1):51-60. PubMed, CrossRef
  40. Greber UF, Senior A, Gerace L. A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large lumenal domain and a small cytoplasmic tail. EMBO J. 1990 May;9(5):1495-502. PubMed, PubMedCentral
  41. Starr CM, Hanover JA. Structure and Function of Nuclear Pore Glycoproteines. Nuclear Trafficking. Ed. Feldherr CM. 1992; 7: 175-201. CrossRef
  42. Wozniak RW, Blobel G. The single transmembrane segment of gp210 is sufficient for sorting to the pore membrane domain of the nuclear envelope. J Cell Biol. 1992 Dec;119(6):1441-9. PubMed, PubMedCentral, CrossRef
  43. Perez-Terzic C, Jaconi M, Stehno-Bittel L. Measurement of intracellular calcium concentration using confocal microscopy. Methods Mol Biol. 1999;114:75-91. PubMed, CrossRef
  44. Higazi DR, Fearnley CJ, Drawnel FM, Talasila A, Corps EM, Ritter O, McDonald F, Mikoshiba K, Bootman MD, Roderick HL. Endothelin-1-stimulated InsP3-induced Ca2+ release is a nexus for hypertrophic signaling in cardiac myocytes. Mol Cell. 2009 Feb 27;33(4):472-82. PubMed, CrossRef
  45. Nicotera P, Zhivotovsky B, Orrenius S. Nuclear calcium transport and the role of calcium in apoptosis. Cell Calcium. 1994 Oct;16(4):279-88. PubMed, CrossRef
  46. Cardoso MC. Law and order in the nucleus. Zellbiologie Aktuell. 2003; 29(3): 8-10.
  47. Dundr M, Misteli T. Functional architecture in the cell nucleus. Biochem J. 2001 Jun 1;356(Pt 2):297-310. PubMed, PubMedCentral, CrossRef
  48. Pederson T. The Nucleus by Tom Misteli and David L. Spector, eds. (2011) CSHL Press, New York.  FASEB J. 2012; 26(1): 9-10. CrossRef
  49. Monneron A, Bernhard W. Fine structural organization of the interphase nucleus in some mammalian cells. J Ultrastruct Res. 1969 May;27(3):266-88. PubMed, CrossRef
  50. Montgomery TH. Comparative cytological studies, with especial regard to the morphology of the nucleolus. J Morphol. 1898; 15(2): 265-582. CrossRef
  51. Gavrilov AA, Razin SV.  Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol. 2015; 49(1): 21–39. PubMed, CrossRef
  52. Gonzalez-Melendi P, Beven A, Boudonck K, Abranches R, Wells B, Dolan L, Shaw P. The nucleus: a highly organized but dynamic structure. J Microsc. 2000 Jun;198(Pt 3):199-207. PubMed, CrossRef
  53. Hancock R. Internal organisation of the nucleus: assembly of compartments by macromolecular crowding and the nuclear matrix model. Biol Cell. 2004 Oct;96(8):595-601. PubMed, CrossRef
  54. Lamond  AI, Earnshaw WC. Structure and function in the nucleus. Science. 1998; 280(5653): 547-553.  CrossRef
  55. Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010 Oct;11(10):682-96. PubMed, PubMedCentral, CrossRef
  56. Tsai RY, McKay RD. A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin. J Cell Biol. 2005 Jan 17;168(2):179-84. PubMed, PubMedCentral, CrossRef
  57. Matzke AJ, Weiger TM, Matzke M. Ion channels at the nucleus: electrophysiology meets the genome. Mol Plant. 2010 Jul;3(4):642-52. PubMed, PubMedCentral, CrossRef
  58. Bordji K, Becerril-Ortega J, Nicole O, Buisson A. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ß production. J Neurosci. 2010 Nov 24;30(47):15927-42.  PubMed, CrossRef
  59. Dingwall C, Laskey R. The nuclear membrane. Science. 1992 Nov 6;258(5084):942-7. PubMed
  60. Akey CW. Interactions and structure of the nuclear pore complex revealed by cryo-electron microscopy. J Cell Biol. 1989 Sep;109(3):955-70. PubMed, PubMedCentral, CrossRef
  61. Hinshaw JE, Carragher BO, Milligan RA. Architecture and design of the nuclear pore complex. Cell. 1992 Jun 26;69(7):1133-41. PubMed, CrossRef
  62. Clever J, Yamada M, Kasamatsu H. Import of simian virus 40 virions through nuclear pore complexes. Proc Natl Acad Sci USA. 1991 Aug 15;88(16):7333-7. PubMed, PubMedCentral, CrossRef
  63. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci. 2011 May 4;31(18):6627-38. PubMed, PubMedCentral, CrossRef
  64. Arantes LA, Aguiar CJ, Amaya MJ, Figueiró NC, Andrade LM, Rocha-Resende C, Resende RR, Franchini KG, Guatimosim S, Leite MF. Nuclear inositol 1,4,5-trisphosphate is a necessary and conserved signal for the induction of both pathological and physiological cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2012 Oct;53(4):475-86. PubMed, CrossRef
  65. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006 Aug;7(8):589-600. PubMed, CrossRef
  66. Matzke M, Aufsatz W, Gregor W, van Der Winden J, Papp I, Matzke AJ. Ion transporters in the nucleus? Plant Physiol. 2001 Sep;127(1):10-3. PubMed, PubMedCentral, CrossRef
  67. Gerasimenko O, Gerasimenko J. New aspects of nuclear calcium signalling. J Cell Sci. 2004 Jul 1;117(Pt 15):3087-94. PubMed, CrossRef
  68. Macara IG.  Transport into and out of the nucleus. Microbiol Mol Biol Rev. 2001 Dec;65(4):570-94. PubMed, PubMedCentral, CrossRef
  69. Wente SR, Rout MP. The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol. 2010 Oct;2(10):a000562.  PubMed, PubMedCentral, CrossRef
  70. Mekhail K, Moazed D. The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol. 2010 May;11(5):317-28. PubMed, PubMedCentral, CrossRef
  71. Greber UF, Gerace L. Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus. J Cell Biol. 1995 Jan;128(1-2):5-14. PubMed, PubMedCentral, CrossRef
  72. Hodel MR, Corbett AH, Hodel AE. Dissection of a nuclear localization signal. J Biol Chem. 2001 Jan 12;276(2):1317-25. PubMed, CrossRef
  73. Franco-Obregón A, Wang HW, Clapham DE. Distinct ion channel classes are expressed on the outer nuclear envelope of T- and B-lymphocyte cell lines. Biophys J. 2000 Jul;79(1):202-14. PubMed, PubMedCentralCrossRef
  74. Jans DA, Xiao CY, Lam MH. Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays. 2000 Jun;22(6):532-44.
    PubMed, CrossRef
  75. Charpentier M, Vaz Martins T, Granqvist E, Oldroyd GE, Morris RJ. The role of DMI1 in establishing Ca (2+) oscillations in legume symbioses. Plant Signal Behav. 2013 Feb;8(2):e22894.  PubMed, PubMed, CrossRef
  76. Venkateshwaran M, Cosme A, Han L, Banba M, Satyshur KA, Schleiff E, Parniske M, Imaizumi-Anraku H, Ané JM. The recent evolution of a symbiotic ion channel in the legume family altered ion conductance and improved functionality in calcium signaling. Plant Cell. 2012 Jun;24(6):2528-45. PubMed, PubMedCentral, CrossRef
  77. Atkinson L, Milligan CJ, Buckley NJ, Deuchars J. An ATP-gated ion channel at the cell nucleus. Nature. 2002 Nov 7;420(6911):42. PubMed, CrossRef
  78. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 1996 May 3;272(5262):735-8. PubMed, CrossRef
  79. Stonehouse AH, Grubb BD, Pringle JH, Norman RI, Stanfield PR, Brammar WJ. Nuclear immunostaining in rat neuronal cells using two anti-Kir2.2 ion channel polyclonal antibodies. J Mol Neurosci. 2003 Apr;20(2):189-94. PubMed, CrossRef
  80. Santos RM, Rosario LM, Nadal A, Garcia-Sancho J, Soria B, Valdeolmillos M. Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch. 1991 May;418(4):417-22. PubMed, CrossRef
  81. Quesada I, Rovira JM, Martin F, Roche E, Nadal A, Soria B. Nuclear KATP channels trigger nuclear Ca(2+) transients that modulate nuclear function. Proc Natl Acad Sci USA. 2002 Jul 9;99(14):9544-9. PubMed, PubMedCentral, CrossRef
  82. Kondor-Koch C, Riedel N, Valentin R, Fasold H, Fischer H. Characterization of an ATPase on the inside of rat-liver nuclear envelopes by affinity labeling. Eur J Biochem. 1982 Oct;127(2):285-9. PubMed, CrossRef
  83. Garner MH. Na,K-ATPase in the nuclear envelope regulates Na+: K+ gradients in hepatocyte nuclei. J Membr Biol. 2002 May 15;187(2):97-115.
    PubMed, CrossRef
  84. Galva C, Artigas P, Gatto C. Nuclear Na+/K+-ATPase plays an active role in nucleoplasmic Ca2+ homeostasis. J Cell Sci. 2012 Dec 15;125(Pt 24):6137-47.  PubMed, PubMedCentral, CrossRef
  85. Humbert JP, Matter N, Artault JC, Köppler P, Malviya AN. Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes. J Biol Chem. 1996 Jan 5;271(1):478-85. PubMed, CrossRef
  86. Xie X, Wu G, Ledeen RW. C6 cells express a sodium-calcium exchanger/GM1 complex in the nuclear envelope but have no exchanger in the plasma membrane: comparison to astrocytes. J Neurosci Res. 2004 May 1;76(3):363-75. PubMed, CrossRef
  87. Santos JM, Martínez-Zaguilán R, Facanha AR, Hussain F, Sennoune SR. Vacuolar H+-ATPase in the nuclear membranes regulates nucleo-cytosolic proton gradients. Am J Physiol Cell Physiol. 2016 Oct 1;311(4):C547-C558. PubMed, CrossRef
  88. Cancela JM, Van Coppenolle F, Galione A, Tepikin AV, Petersen OH. Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO J. 2002 Mar 1;21(5):909-19. PubMed, PubMedCentral, CrossRef
  89. Malviya AN, Rogue P, Vincendon G. Stereospecific inositol 1,4,5-[32P]trisphosphate binding to isolated rat liver nuclei: evidence for inositol trisphosphate receptor-mediated calcium release from the nucleus. Proc Natl Acad Sci USA. 1990 Dec;87(23):9270-4. PubMed, PubMed, CrossRef
  90. Laporte R, Hui A, Laher I. Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev. 2004 Dec;56(4):439-513. PubMed, CrossRef
  91. Krutetskaya Z.I. Mechanisms of Ca2+ signaling in cells. Mechanisms of Intracellular Signaling: Monograph. St. Petersburg University Press, St. Petersburg, 2003; 209 p. (In Russian).
  92. Rossi D, Sorrentino V. Molecular genetics of ryanodine receptors Ca2+-release channels. Cell Calcium. 2002 Nov-Dec;32(5-6):307-19.  PubMed, CrossRef
  93. Zhu MX, Ma J, Parrington J, Galione A, Evans AM. TPCs: Endolysosomal channels for Ca2+ mobilization from acidic organelles triggered by NAADP. FEBS Lett. 2010 May 17;584(10):1966-74.  PubMed, PubMedCentral, CrossRef
  94. Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca(2+) signalling: A tale of ion channels, pumps and transporters. World J Biol Chem. 2012 Jul 26;3(7):127-58. PubMed, PubMedCentral, CrossRef
  95. Patel S, Marchant JS, Brailoiu E. Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals. Cell Calcium. 2010 Jun;47(6):480-90. PubMed, PubMedCentral, CrossRef
  96. Galione A, Petersen OH. The NAADP receptor: new receptors or new regulation? Mol Interv. 2005 Apr;5(2):73-9. PubMed, CrossRef
  97. Gerasimenko JV, Maruyama Y, Yano K, Dolman NJ, Tepikin AV, Petersen OH, Gerasimenko OV. NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors. J Cell Biol. 2003 Oct 27;163(2):271-82. PubMed, PubMedCentral, CrossRef
  98. Koppler P, Matter N, Malviya AN. Evidence for stereospecific inositol 1,3,4,5-[3H]tetrakisphosphate binding sites on rat liver nuclei. Delineating inositol 1,3,4,5-tetrakisphosphate interaction in nuclear calcium signaling process. J Biol Chem. 1993 Dec 15;268(35):26248-52. PubMed
  99. Santella L, Carafoli E. Calcium signaling in the cell nucleus. FASEB J. 1997; 11(13): 1091-1109.  CrossRef
  100. Alcázar-Román AR1, Wente SR. Inositol polyphosphates: a new frontier for regulating gene expression. Chromosoma. 2008 Feb;117(1):1-13. PubMed, CrossRef
  101. Wu M, Chong LS, Perlman DH, Resnick AC, Fiedler D. Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms. Proc Natl Acad Sci USA. 2016 Nov 1;113(44):E6757-E6765. PubMed, PubMedCentral, CrossRef
  102. Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH. Calcium transport pathways in the nucleus. Pflugers Arch. 1996 May;432(1):1-6. PubMed, CrossRef
  103. Nicotera P, McConkey DJ, Jones DP, Orrenius S. ATP stimulates Ca2+ uptake and increases the free Ca2+ concentration in isolated rat liver nuclei. Proc Natl Acad Sci USA. 1989 Jan;86(2):453-7. PubMed, PubMed, CrossRef
  104. Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell. 1995 Feb 10;80(3):439-44. PubMed, CrossRef
  105. Adebanjo OA, Biswas G, Moonga BS, Anandatheerthavarada HK, Sun L, Bevis PJ, Sodam BR, Lai FA, Avadhani NG, Zaidi M. Novel biochemical and functional insights into nuclear Ca(2+) transport through IP(3)Rs and RyRs in osteoblasts. Am J Physiol Renal Physiol. 2000 May;278(5):F784-91.
    PubMed, CrossRef
  106. Mishra OP, Delivoria-Papadopoulos M. Nitric oxide-mediated Ca++-influx in neuronal nuclei and cortical synaptosomes of normoxic and hypoxic newborn piglets. Neurosci Lett. 2002 Jan 25;318(2):93-7. PubMed, CrossRef
  107. Shahin V, Danker T, Enss K, Ossig R, Oberleithner H. Evidence for Ca2+- and ATP-sensitive peripheral channels in nuclear pore complexes. FASEB J. 2001 Sep;15(11):1895-901.  PubMed, CrossRef
  108. Borysov SI, Grebinyk DM, Matyshevska O.P. Са2+-ATPase activity and ATP-dependent accumulation of Са2+ in spleen lymphocytes nuclei of X-irradiated animals. Taras Shevchenko National University Press. Biology. 2001; 33: 20-22. (In Ukrainian).
  109. Nicotera P, Rossi AD. Nuclear Ca2+: physiological regulation and role in apoptosis. Mol Cell Biochem. 1994 Jun 15;135(1):89-98. PubMed
  110. Noble D, Herchuelz A. Role of Na/Ca exchange and the plasma membrane Ca2+-ATPase in cell function. Conference on Na/Ca exchange. EMBO Rep. 2007 Mar;8(3):228-32. PubMed, PubMedCentral, CrossRef
  111. Lytton J. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J.  2007; 406: 365-382.
  112. Brini M, Carafoli E. The plasma membrane Ca²+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol. 2011 Feb 1;3(2). pii: a004168.  PubMed, PubMedCentral, CrossRef
  113. Ledeen RW, Wu G. Nuclear sphingolipids: metabolism and signaling. J Lipid Res. 2008 Jun;49(6):1176-86. PubMed, PubMedCentral, CrossRef
  114. Lipp P, Thomas D, Berridge MJ, Bootman MD. Nuclear calcium signalling by individual cytoplasmic calcium puffs. EMBO J. 1997 Dec 1;16(23):7166-73. PubMed, PubMedCentral, CrossRef
  115. Iwai M, Michikawa T, Bosanac I, Ikura M, Mikoshiba K. Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J Biol Chem. 2007 Apr 27;282(17):12755-64. PubMed, CrossRef
  116. Rodrigues MA, Gomes DA, Andrade VA, Leite MF, Nathanson MH. Insulin induces calcium signals in the nucleus of rat hepatocytes. Hepatology. 2008 Nov;48(5):1621-31. PubMed, PubMedCentral, CrossRef
  117. Ibarra C, Vicencio JM, Estrada M, Lin Y, Rocco P, Rebellato P, Munoz JP, Garcia-Prieto J, Quest AF, Chiong M, Davidson SM, Bulatovic I, Grinnemo KH, Larsson O, Szabadkai G, Uhlén P, Jaimovich E, Lavandero S. Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors. Circ Res. 2013 Jan 18;112(2):236-45.  PubMed, CrossRef
  118. Lipton SA. Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx. 2004 Jan;1(1):101-10. PubMed, PubMedCentral, CrossRef
  119. Bading H. Therapeutic targeting of the pathological triad of extrasynaptic NMDA receptor signaling in neurodegenerations. J Exp Med. 2017 Mar 6;214(3):569-578. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.