Ukr.Biochem.J. 2018; Том 90, № 4, липень-серпень, c. 64-73

doi: https://doi.org/10.15407/ubj90.04.064

Оцінка впливу одноатомних спиртів, ненасичених жирних кислот, фосфорорганічних сполук на ензиматичний гідроліз АТР у клітинних мембранах гладенького м’яза ободової кишки щура

О. А. Капля*, С. В. Мідик1, С. В. Хижняк1
1Національний університет біоресурсів та природокористування України, Київ;
*e-mail: kaplyaalex@gmail.com
Відмінності структурно-функціональної стійкості АТР-гідролаз до дії коротколанцюгових аліфатичних одноатомних спиртів і дов­голанцюгових ненасичених жирних кислот (НЖК) із широким діапазоном за ефективністю мембранотропної дії було оцінено в клітинних мембранах гладких м’язів ободової кишки (ГМОК) щура. Показано, що Mg2+,АТP-гідролаза є більш стійкою до дії досліджуваних аліфатичних сполук, ніж Na+,K+-АТPаза. Спостерігався чіткий зв’язок між збільшенням ефективності інгібування з довжиною ланцюга (кількістю атомів вуглецю) і зменшенням відносної полярності в ряду первинних спиртів. Вторинний спирт 2-пропанол виявився слабшим інгібітором, ніж первинний спирт 1-пропанол. Величина I50 (мМ) зменшувалася в такій послідовності для АТРаз: етанол > 2-пропанол > 1-пропанол > 1-бутанол. НЖК були значно сильнішими інгібіторами (мкМ діапазон I50), ніж спирти (мМ діапазон). Олеїнова кислота інгібувала Na+,K+-АТРазу з більш низькою ефективністю, ніж було виявлено для арахідонової кислоти відповідно до відмінностей в числі подвійних зв’язків; I50 для Mg2+,ATP-гідролазної активності була однаковою для досліджених НЖК. Крім того, фосфорорганічний пестицид фенаміфос виявився слабким інгібітором АТРаз. Порівняння в ензимній парі ATP-гідролаз ГМОК може бути застосовано для оцінки ефективності мембранотропної дії біологічно активних сполук на активність Na+,K+-АТPази з точки зору її опосередкованої участі в модуляції електромеханічного спряження в гладеньких м’язах кишечника.

Ключові слова: , , , , , ,


Посилання:

  1. Clausen MV, Hilbers F, Poulsen H. The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease. Front Physiol. 2017 Jun 6;8:371. PubMed, PubMedCentral, CrossRef
  2. Floyd RV, Mobasheri A, Wray S. Gestation changes sodium pump isoform expression, leading to changes in ouabain sensitivity, contractility, and intracellular calcium in rat uterus. Physiol Rep. 2017 Dec;5(23): e13527.  PubMed, PubMedCentral, CrossRef
  3. Kosterin SA. Calcium transport in smooth muscle. Kiev: Naukova Dumka, 1990. 216 p. (In Russian).
  4. Huang X, Lee SH, Lu H, Sanders KM, Koh SD. Molecular and functional characterization of inwardly rectifying K+ currents in murine proximal colon. J Physiol. 2018 Feb 1;596(3):379-391. PubMed, PubMedCentral, CrossRef
  5. Hill-Eubanks DC, Werner ME, Heppner TJ, Nelson MT. Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol. 2011 Sep 1;3(9):a004549.
    PubMed, PubMedCentral, CrossRef
  6. 6. Burke EP, Sanders KM. Effects of ouabain on background and voltage-dependent currents in canine colonic myocytes. Am J Physiol. 1990 Sep;259(3 Pt 1):C402-8. PubMed, CrossRef
  7. Burke EP, Sanders KM, Horowitz B. Sodium pump isozymes are differentially expressed in electrically dissimilar regions of colonic circular smooth muscle. Proc Natl Acad Sci USA. 1991 Mar 15;88(6):2370-4. PubMed, PubMedCentral, CrossRef
  8. Horner MJ, Ward SM, Gerthoffer WT, Sanders KM, Horowitz B. Maintenance of morphology and function of canine proximal colon smooth muscle in organ culture. Am J Physiol. 1997 Mar;272(3 Pt 1):G669-80. PubMed, CrossRef
  9. 9. Allgayer H, Kruis W, Paumgartner G, Wiebecke B, Brown L, Erdmann E. Inverse relationship between colonic (Na+ + K+)-ATPase activity and degree of mucosal inflammation in inflammatory bowel disease. Dig Dis Sci. 1988 Apr;33(4):417-22. PubMed, CrossRef
  10. 10. Ohama T, Hori M, Ozaki H. Mechanism of abnormal intestinal motility in inflammatory bowel disease: how smooth muscle contraction is reduced? J Smooth Muscle Res. 2007 Apr;43(2):43-54. PubMed, CrossRef
  11. Kaplia AA. The heterogeneity of the Na+,K+-ATPase ouabain sensitivity in microsomal membranes of rat colon smooth muscles. Ukr Biokhim Zhurn. 2011 Sep-Oct;83(5):89-93. (In Russian).  PubMed
  12. Nyholm TK. Lipid-protein interplay and lateral organization in biomembranes. Chem Phys Lipids. 2015 Jul;189:48-55. PubMed, CrossRef
  13. Kaplya A, Kravtsova VV, Kravtsov AV. Inactivation of brain Na+,K(+)-ATPase catalytic subunit isoforms by sodium dodecyl sulfate. Membr Cell Biol. 1997;11(1):87-99. PubMed
  14. Habeck M, Haviv H, Katz A, Kapri-Pardes E, Ayciriex S, Shevchenko A, Ogawa H, Toyoshima C, Karlish SJ. Stimulation, inhibition, or stabilization of Na,K-ATPase caused by specific lipid interactions at distinct sites. J Biol Chem. 2015 Feb 20;290(8):4829-42.  PubMed, PubMedCentral, CrossRef
  15. Kaplia AA. Different sensitivity of Na+,K+-ATPase and Mg2+-АТРase to ethanol and arachidonic acid in rat  colon smooth muscle under pretreatment of cellular membranes with Ds-Na. Ukr Biochem J. 2017; 89(2): 70-77.  CrossRef
  16. Sudji IR, Subburaj Y, Frenkel N, García-Sáez AJ, Wink M. Membrane Disintegration Caused by the Steroid Saponin Digitonin Is Related to the Presence of Cholesterol. Molecules. 2015 Nov 9;20(11):20146-60.  PubMed, CrossRef
  17. Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Wiley-VCH Publishers, 3rd ed., 2003; 653 p.
  18. Snyder LR. Classification of the solvent properties of common liquids. J Chromatography A. 1974; 92(2):223-230.  CrossRef
  19. Smallwood IM. Handbook of organic solvent properties. UK, 2012; 306 p.
  20. McKarns SC, Hansch C, Caldwell WS, Morgan WT, Moore SK, Doolittle DJ. Correlation between hydrophobicity of short-chain aliphatic alcohols and their ability to alter plasma membrane integrity. Fundam Appl Toxicol. 1997 Mar;36(1):62-70. PubMed, CrossRef
  21. Valentine WM. Toxicology of selected pesticides, drugs, and chemicals. Short-chain alcohols. Vet Clin North Am Small Anim Pract. 1990 Mar;20(2):515-23. PubMed
  22. Nhamburo PT, Salafsky BP, Hoffman PL, Tabakoff B. Effects of short-chain alcohols and norepinephrine on brain (Na+,K+)ATPase activity. Biochem Pharmacol. 1986 Jun 15;35(12):1987-92. PubMed, CrossRef
  23. Mishchuk DO, Kaplia AA. Effect of ethanol on structural and functional characteristics of rat brain cortical membranes in vitro. Ukr Biokhim Zhurn. 2003 Mar-Apr;75(2):55-61. (In Russian). PubMed
  24. Ly HV, Longo ML. The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. Biophys J. 2004 Aug;87(2):1013-33. PubMed, PubMedCentral, CrossRef
  25. Löbbecke L, Cevc G. Effects of short-chain alcohols on the phase behavior and interdigitation of phosphatidylcholine bilayer membranes. Biochim Biophys Acta. 1995 Jul 6;1237(1):59-69. PubMed, CrossRef
  26. Goldstein DB. The effects of drugs on membrane fluidity. Annu Rev Pharmacol Toxicol. 1984;24:43-64. PubMed, CrossRef
  27. Ballal D, Chapman WG. Hydrophobic and hydrophilic interactions in aqueous mixtures of alcohols at a hydrophobic surface. J Chem Phys. 2013 Sep 21;139(11):114706. PubMed, CrossRef
  28. Swarts HG, Schuurmans Stekhoven FM, De Pont JJ. Binding of unsaturated fatty acids to Na+, K(+)-ATPase leading to inhibition and inactivation. Biochim Biophys Acta. 1990 May 9;1024(1):32-40. PubMed, CrossRef
  29. Mahmmoud YA, Christensen SB. Oleic and linoleic acids are active principles in Nigella sativa and stabilize an E(2)P conformation of the Na,K-ATPase. Fatty acids differentially regulate cardiac glycoside interaction with the pump. Biochim Biophys Acta. 2011 Oct;1808(10):2413-20. PubMed, CrossRef
  30. Swann AC. Free fatty acids and (Na+,K+)-ATPase: effects on cation regulation, enzyme conformation, and interactions with ethanol. Arch Biochem Biophys. 1984 Sep;233(2):354-61. PubMed, CrossRef
  31. Jorgensen PL, Hakansson KO, Karlish SJ. Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu Rev Physiol. 2003;65:817-49.  PubMed, CrossRef
  32. Kubala M, Čechová P, Geletičová J, Biler M, Štenclová T, Trouillas P, Biedermann D. Flavonolignans as a novel class of sodium pump inhibitors. Front Physiol. 2016 Mar 30;7:115. PubMed, PubMedCentral, CrossRef
  33. Kaplia AA. The influence of heavy metal ions, spermine and sodium nitroprusside on ATP-hydrolases of cell membranes of rat colon smooth muscle. Ukr Biochem J. 2016 Jul-Aug;88(4):20-8. PubMed, CrossRef
  34. Nordmeyer D, Dickson DW. Biological activity and acetylcholinesterase inhibition by nonfumigant nematicides and their degradation products on Meloidogyne incognit. Revue Nématol. 1990; 13(2): 229-232.
  35. Sánchez-Bayo F. Insecticides mode of action in relation to their toxicity to non-target organisms. J Environ Anal Toxicol. 2012; S4:002.  CrossRef
  36. Kharchenko OA, Balan GM, Bubalo NM.  Acute Organophosphate Poisoning: the Main Clinical Syndromes and the Mechanisms of their Formation (Literature Review and the Data of Own Research).  Modern Probl Toxicol. 2013;(1-2): 17-31.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.