Ukr.Biochem.J. 2018; Том 90, № 6, листопад-грудень, c. 97-109

doi: https://doi.org/10.15407/ubj90.06.097

Превентивна дія N-стеароїлетаноламіну на розвиток порушення пам’яті, біохімічні параметри крові та мозку в щурів з експериментальними скополамініндукованими когнітивними порушеннями

Т. М. Горідько1, Г. В. Косякова1, А. Г. Бердишев1,
О. Ф. Мегедь1, О. В. Онопченко1, В. М. Клімашевський1,
О. С. Ткаченко1, В. Р. Базилянська1, В. О. Холін2,
К. О. Песчана2, С. А. Михальський2, Н. М. Гула1

1Інститут біохімії ім. О. В. Палладіна НАН України, Київ;
2Інститут геронтології НАМН України, Київ;
e-mail: TanGoRi@ukr.net

Порушення когнітивних функцій є най­актуальнішою медичною та соціальною проблемою сьогодення. Метою роботи було оцінити протекторний вплив N-стеароїлетаноламіну (NSE) на стан пам’яті, біохімічні показники крові та головного мозку в щурів за індукованих  скополаміном когнітивних розладів. Результати досліджень показали, що NSE за умов введення його щурам per os (5 мг/кг, 5 днів, протягом останніх 3 днів за 20 хв до введення скополаміну (1 мг/кг, один раз на добу протягом 3 днів, інтраперитонеально)) запобігає розвитку порушення пам’яті. Виявлений ефект NSE може бути обумовлений його здатністю запобігати зростанню ацетилхолінестеразної активності, порушенню про/антиоксидантної рівноваги в плазмі крові, гіпокампі та фронтальній корі головного мозку тварин, змінам вмісту фосфоліпідів, вільного холестеролу та його ефірів у досліджуваних відділах головного мозку щурів. Виявлені біологічні ефекти N-стеароїлетаноламіну свідчать, що NSE є перспективною сполукою для створення на його основі нового лікарського засобу для лікування когнітивних порушень різного генезу.

Ключові слова: , , , , , , , , ,


Посилання:

  1. Zanettini C, Panlilio LV, Alicki M, Goldberg SR, Haller J, Yasar S. Effects of endocannabinoid system modulation on cognitive and emotional behavior. Front Behav Neurosci. 2011 Sep 13;5:57. PubMed, PubMedCentral, CrossRef
  2. Hind WH, Tufarelli C, Neophytou M, Anderson SI, England TJ, O’Sullivan SE. Endocannabinoids modulate human blood-brain barrier permeability in vitro. Br J Pharmacol. 2015 Jun;172(12):3015-27. PubMed, PubMedCentral, CrossRef
  3. Panlilio LV, Justinova Z, Goldberg SR. Inhibition of FAAH and activation of PPAR: new approaches to the treatment of cognitive dysfunction and drug addiction. Pharmacol Ther. 2013 Apr;138(1):84-102.  PubMed, PubMedCentral, CrossRef
  4. Costa B, Comelli F, Bettoni I, Colleoni M, Giagnoni G. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB(1), TRPV1 and PPARgamma receptors and neurotrophic factors. Pain. 2008 Oct 31;139(3):541-50.  PubMed, CrossRef
  5. Moreno S, Cerù MP. In search for novel strategies towards neuroprotection and neuroregeneration: is PPARα a promising therapeutic target? Neural Regen Res. 2015 Sep;10(9):1409-12.  PubMed, PubMedCentral, CrossRef
  6. Lykhmus O, Uspenska K, Koval L, Lytovchenko D, Voytenko L, Horid’ko T, Kosiakova H, Gula N, Komisarenko S, Skok M. N-Stearoylethanolamine protects the brain and improves memory of mice treated with lipopolysaccharide or immunized with the extracellular domain of α7 nicotinic acetylcholine receptor. Int Immunopharmacol. 2017 Nov;52:290-296. PubMed, CrossRef
  7. Maccarrone M, Cartoni A, Parolaro D, Margonelli A, Massi P, Bari M, Battista N, Finazzi-Agrò A. Cannabimimetic activity, binding, and degradation of stearoylethanolamide within the mouse central nervous system. Mol Cell Neurosci. 2002 Sep;21(1):126-40. PubMed, CrossRef
  8. Klinkenberg I, Blokland A. A comparison of scopolamine and biperiden as a rodent model for cholinergic cognitive impairment. Psychopharmacology (Berl). 2011 Jun;215(3):549-66.  PubMed, PubMedCentral, CrossRef
  9. Ding Q, Sethna F, Wang H. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background. Behav Brain Res. 2014 Sep 1;271:72-8. PubMed, PubMedCentral, CrossRef
  10. A guide to preclinical drug research. Ed. Mironov A. N. Moscow: FGBU “NTSESMP”, 2012. 944p. (In Russian).
  11. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911-7. PubMed, CrossRef
  12. Svetashev VI, Vaskovsky VE. A simplified technique for thin-layer microchromatography of lipids. J Chromatogr. 1972 May 3;67(2):376-8. PubMed, CrossRef
  13. Vaskovsky VE, Kostetsky EY, Vasendin IM. A universal reagent for phospholipid analysis. J Chromatogr. 1975 Nov 12;114(1):129-41. PubMed, CrossRef
  14. Mel’nychuk SD, Kuz’menko AI, Margitich VM, Govseeva NN, Gorid’ko TN, Hulaia NM. Effect of carbon dioxide on free radical processes as affected by artificial hypobiosis in rats. Ukr Biokhim Zhurn. 1998 Jan-Feb;70(1):87-94. (In Russian). PubMed
  15. Csóvári S, Andyal T, Strenger J. Determination of the antioxidant properties of the blood and their diagnostic significance in the elderly. Lab Delo. 1991;(10):9-13. (In Russian). PubMed
  16. Koroliuk MA, Ivanova LI, Mayorova IG, Tokarev VE. A method of determining catalase activity. Lab Delo. 1988;(1):16-9. (In Russian). PubMed
  17. Pereslegina IA. The activity of antioxidant enzymes in the saliva of normal children. Lab Delo. 1989;(11):20-3. (In Russian). PubMed
  18. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. PubMed, CrossRef
  19. Buchanan KA, Petrovic MM, Chamberlain SE, Marrion NV, Mellor JR. Facilitation of long-term potentiation by muscarinic M(1) receptors is mediated by inhibition of SK channels. Neuron. 2010 Dec 9;68(5):948-63.  PubMed, PubMedCentral, CrossRef
  20. Soares JC, Oliveira MG, Ferreira TL. Inactivation of muscarinic receptors impairs place and response learning: implications for multiple memory systems. Neuropharmacology. 2013 Oct;73:320-6.  PubMed, CrossRef
  21. Bihaqi SW, Singh AP, Tiwari M. In vivo investigation of the neuroprotective property of Convolvulus pluricaulis in scopolamine-induced cognitive impairments in Wistar rats. Indian J Pharmacol. 2011 Sep;43(5):520-5. PubMed, PubMedCentral, CrossRef
  22. Sridharamurthy NB, Ashok В, Yogananda R. Evaluation of Antioxidant and Acetyl Cholinesterase inhibitory activity of Peltophorum pterocarpum in Scopolamine treated Rats. Int J Drug Dev Res. 2012;4(3):115-127.
  23. Sahraei E., Soodi M., Jafarzadeh E., Karimivaghef Z. Investigation of the scopolamine effect on acetylcholinesterase activity. Res Pharm Sci. 2012;7(5):S152.
  24. Wang J, Zhang HY, Tang XC. Cholinergic deficiency involved in vascular dementia: possible mechanism and strategy of treatment. Acta Pharmacol Sin. 2009 Jul;30(7):879-88. PubMed, PubMedCentral, CrossRef
  25. Tata AM, Velluto L, D’Angelo C, Reale M. Cholinergic system dysfunction and neurodegenerative diseases: cause or effect? CNS Neurol Disord Drug Targets. 2014;13(7):1294-303. PubMed, CrossRef
  26. Fields RD, Dutta DJ, Belgrad J, Robnett M. Cholinergic signaling in myelination. Glia. 2017 May;65(5):687-698. PubMed, CrossRef
  27. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011 Sep;1(1):a006189.  PubMed, PubMedCentral, CrossRef
  28. Meguro K, Kasai M, Akanuma K, Meguro M, Ishii H, Yamaguchi S. Donepezil and life expectancy in Alzheimer’s disease: a retrospective analysis in the Tajiri Project. BMC Neurol. 2014 Apr 11;14:83. PubMed, PubMedCentral, CrossRef
  29. Romani R, Galeazzi R, Rosi G, Fiorini R, Pirisinu I, Ambrosini A, Zolese G. Anandamide and its congeners inhibit human plasma butyrylcholinesterase. Possible new roles for these endocannabinoids? Biochimie. 2011 Sep;93(9):1584-91. PubMed, CrossRef
  30. Darvesh S, Leblanc AM, Macdonald IR, Reid GA, Bhan V, Macaulay RJ, Fisk JD. Butyrylcholinesterase activity in multiple sclerosis neuropathology. Chem Biol Interact. 2010 Sep 6;187(1-3):425-31. PubMed, CrossRef
  31. DeBay DR, Reid GA, Pottie IR, Martin E, Bowen CV, Darvesh S. Targeting butyrylcholinesterase for preclinical single photon emission computed tomography (SPECT) imaging of Alzheimer’s disease. Alzheimers Dement (N Y). 2017 Feb 24;3(2):166-176. PubMed, PubMedCentral, CrossRef
  32. Heo HJ, Park YJ, Suh YM, Choi SJ, Kim MJ, Cho HY, Chang YJ, Hong B, Kim HK, Kim E, Kim CJ, Kim BG, Shin DH. Effects of oleamide on choline acetyltransferase and cognitive activities. Biosci Biotechnol Biochem. 2003 Jun;67(6):1284-91. PubMed, CrossRef
  33. Fisher A., Hanin I., Mizuno Y. Mapping the progress of Alzheimer’s and Parkinson’s Disease. New York : Kluwer Academic. Plenum Publishers, 2002. 566 p.
  34. Pattanashetti LA, Taranalli AD, Parvatrao V, Malabade RH, Kumar D. Evaluation of neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats. Indian J Pharmacol. 2017 Jan-Feb;49(1):60-64. PubMed, PubMedCentral, CrossRef
  35. Lee JS, Kim HG, Lee HW, Han JM, Lee SK, Kim DW, Saravanakumar A, Son CG. Hippocampal memory enhancing activity of pine needle extract against scopolamine-induced amnesia in a mouse model. Sci Rep. 2015 May 14;5:9651. PubMed, PubMedCentral, CrossRef
  36. Zhukov AD, Berdyshev AG, Kosiakova GV, Klimashevskiy VM, Gorid’ko TM, Meged OF, Hula NM. N-stearoylethanolamine effect on the level of 11-hydroxycorticosteroids, cytokines IL-1, IL-6 and TNFalpha in rats with nonspecific inflammation caused by thermal burn of skin. Ukr Biochem J. 2014 May-Jun;86(3):88-97. (In Ukrainian). PubMed, CrossRef
  37. Kosiakova HV, Hula NM. The N-stearoylethanolamine effect on the NO-synthase way of nitrogen oxide formation and phospholipid composition of erythrocyte membranes in rats with streptozotocine diabetes. Ukr Biokhim Zhurn. 2007 Nov-Dec;79(6):53-9. (In Ukrainian). PubMed
  38. Berdyshev AG, Kosiakova HV, Hula NM. Modulation of LPS-induced ROS production and NF-κB nuclear translocation by N-stearoylethanolamine in macrophages.  Ukr Biochem J. 2017 Sep-Oct; 89(5):62-69. CrossRef
  39. Goridko TM, Kosiakova GV, Berdyschev AG, Bazylyanska VR, Margitich VM, Gula NM. The influence of N-stearoylethanolamine on the activity of antioxidant enzymes and on the level of stable NO metabolites in the rat testes and blood plasma at the early stages of streptozotocine-induced diabetes. Ukr Biokhim Zhurn. 2012 May-Jun;84(3):37-43. (In Ukrainian). PubMed
  40. Onopchenko OV, Kosiakova GV, Meged EF, Klimashevsky VM, Hula NM. The effect of N-stearoylethanolamine on cholesterol content, fatty acid composition and protein carbonylation level in rats with alimentary obesity-induced insulin resistance. Ukr Biochem J. 2014 Nov-Dec;86(6):119-28. PubMed, CrossRef
  41. Li D, Misialek JR, Boerwinkle E, Gottesman RF, Sharrett AR, Mosley TH, Coresh J, Wruck LM, Knopman DS, Alonso A. Plasma phospholipids and prevalence of mild cognitive impairment and/or dementia in the ARIC Neurocognitive Study (ARIC-NCS). Alzheimers Dement (Amst). 2016 May 6;3:73-82. PubMed, PubMedCentral, CrossRef
  42. Kosicek M, Hecimovic S. Phospholipids and Alzheimer’s disease: alterations, mechanisms and potential biomarkers. Int J Mol Sci. 2013 Jan 10;14(1):1310-22. PubMed, PubMedCentral, CrossRef
  43. Chan RB, Oliveira TG, Cortes EP, Honig LS, Duff KE, Small SA, Wenk MR, Shui G, Di Paolo G. Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J Biol Chem. 2012 Jan 20;287(4):2678-88. PubMed, PubMedCentral, CrossRef
  44. Kim M, Nevado-Holgado A, Whiley L, Snowden SG, Soininen H, Kloszewska I, Mecocci P, Tsolaki M, Vellas B, Thambisetty M, Dobson RJB, Powell JF, Lupton MK, Simmons A, Velayudhan L, Lovestone S, Proitsi P, Legido-Quigley C. Association between Plasma Ceramides and Phosphatidylcholines and Hippocampal Brain Volume in Late Onset Alzheimer’s Disease. J Alzheimers Dis. 2017;60(3):809-817. PubMed, PubMedCentral, CrossRef
  45. Proitsi P, Kim M, Whiley L, Simmons A, Sattlecker M, Velayudhan L, Lupton MK, Soininen H, Kloszewska I, Mecocci P, Tsolaki M, Vellas B, Lovestone S, Powell JF, Dobson RJ, Legido-Quigley C. Association of blood lipids with Alzheimer’s disease: A comprehensive lipidomics analysis. Alzheimers Dement. 2017 Feb;13(2):140-151.  PubMed, CrossRef
  46. Fabelo N, Martín V, Marín R, Moreno D, Ferrer I, Díaz M. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer’s disease and facilitates APP/BACE1 interactions. Neurobiol Aging. 2014 Aug;35(8):1801-12. PubMed, CrossRef
  47. Yang X, Sun GY, Eckert GP, Lee JC. Cellular membrane fluidity in amyloid precursor protein processing. Mol Neurobiol. 2014 Aug;50(1):119-29. PubMed, CrossRef
  48. Wurtman RJ. How Anticholinergic Drugs Might Promote Alzheimer’s Disease: More Amyloid-β and Less Phosphatidylcholine. J Alzheimers Dis. 2015;46(4):983-7.  PubMed, CrossRef
  49. Alesenko AV. The potential role for sphingolipids in neuropathogenesis of Alzheimer’s disease. Biomed Khim. 2013 Jan-Feb;59(1):25-50. (In Russian). PubMed, CrossRef
  50. Chung SY, Moriyama T, Uezu E, Uezu K, Hirata R, Yohena N, Masuda Y, Kokubu T, Yamamoto S. Administration of phosphatidylcholine increases brain acetylcholine concentration and improves memory in mice with dementia. J Nutr. 1995 Jun;125(6):1484-9. PubMed
  51. Vaisman N, Pelled D. n-3 phosphatidylserine attenuated scopolamine-induced amnesia in middle-aged rats. Prog Neuropsychopharmacol Biol Psychiatry. 2009 Aug 31;33(6):952-9.  PubMed, CrossRef
  52. Schreurs BG. The effects of cholesterol on learning and memory. Neurosci Biobehav Rev. 2010 Jul;34(8):1366-79.  PubMed, PubMedCentral, CrossRef
  53. Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 2015 Apr;6(4):254-64. PubMed, PubMedCentral, CrossRef
  54. Petrov AM, Kasimov MR, Zefirov AL. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction. Acta Naturae. 2016 Jan-Mar;8(1):58-73. PubMed, PubMedCentral
  55. Paul R, Choudhury A, Kumar S, Giri A, Sandhir R, Borah A. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson’s disease: Involvement of mitochondrial dysfunctions and oxidative stress. PLoS One. 2017 Feb 7;12(2):e0171285.  PubMed, PubMedCentral, CrossRef
  56. Appleton JP, Scutt P, Sprigg N, Bath PM. Hypercholesterolaemia and vascular dementia. Clin Sci (Lond). 2017 Jun 30;131(14):1561-1578.  PubMed, CrossRef
  57. Ayciriex S, Djelti F, Alves S, Regazzetti A, Gaudin M, Varin J, Langui D, Bièche I, Hudry E, Dargère D, Aubourg P, Auzeil N, Laprévote O, Cartier N. Neuronal Cholesterol Accumulation Induced by Cyp46a1 Down-Regulation in Mouse Hippocampus Disrupts Brain Lipid Homeostasis. Front Mol Neurosci. 2017 Jul 11;10:211.  PubMed, PubMedCentral, CrossRef
  58. Borroni V, Barrantes FJ. Cholesterol modulates the rate and mechanism of acetylcholine receptor internalization. J Biol Chem. 2011 May 13;286(19):17122-32. PubMed, PubMedCentral, CrossRef
  59. Grouleff J, Irudayam SJ, Skeby KK, Schiøtt B. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta. 2015 Sep;1848(9):1783-95. PubMed, CrossRef
  60. Sun JH, Yu JT, Tan L. The role of cholesterol metabolism in Alzheimer’s disease. Mol Neurobiol. 2015;51(3):947-65.  PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.